ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity iToffoli gate for fixed-frequency superconducting qubits

121   0   0.0 ( 0 )
 نشر من قبل Yosep Kim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited due to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and Toffoli gates. Our work not only brings a high-fidelity iToffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.

قيم البحث

اقرأ أيضاً

94 - Yuan Xu , Ji Chu , Jiahao Yuan 2020
High-quality two-qubit gate operations are crucial for scalable quantum information processing. Often, the gate fidelity is compromised when the system becomes more integrated. Therefore, a low-error-rate, easy-to-scale two-qubit gate scheme is highl y desirable. Here, we experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit. The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%, derived from the interleaved randomized benchmarking method. Error analysis shows that gate errors are mostly coherence limited. Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.
We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the t ransition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88 and quantum process tomography reveals a gate fidelity of 81%.
Improving coherence times of quantum bits is a fundamental challenge in the field of quantum computing. With long-lived qubits it becomes, however, inefficient to wait until the qubits have relaxed to their ground state after completion of an experim ent. Moreover, for error-correction schemes it is import to rapidly re-initialize ancilla parity-check qubits. We present a simple pulsed qubit reset protocol based on a two-pulse sequence. A first pulse transfers the excited state population to a higher excited qubit state and a second pulse into a lossy environment provided by a low-Q transmission line resonator, which is also used for qubit readout. We show that the remaining excited state population can be suppressed to $2.2pm0.8%$ and utilize the pulsed reset protocol to carry out experiments at enhanced rates.
A challenge for constructing large circuits of superconducting qubits is to balance addressability, coherence and coupling strength. High coherence can be attained by building circuits from fixed-frequency qubits, however, leading techniques cannot c ouple qubits that are far detuned. Here we introduce a method based on a tunable bus which allows for the coupling of two fixed-frequency qubits even at large detunings. By parametrically oscillating the bus at the qubit-qubit detuning we enable a resonant exchange (XX+YY) interaction. We use this interaction to implement a 183ns two-qubit iSWAP gate between qubits separated in frequency by 854MHz with a measured average fidelity of 0.9823(4) from interleaved randomized benchmarking. This gate may be an enabling technology for surface code circuits and for analog quantum simulation.
To date, the highest fidelity quantum logic gates between two qubits have been achieved with variations on the geometric-phase gate in trapped ions, with the two leading variants being the Molmer-Sorensen gate and the light-shift (LS) gate. Both of t hese approaches have their respective advantages and challenges. For example, the latter is technically simpler and is natively insensitive to optical phases, but it has not been made to work directly on a clock-state qubit. We present a new technique for implementing the LS gate that combines the best features of these two approaches: By using a small ($sim {rm MHz}$) detuning from a narrow (dipole-forbidden) optical transition, we are able to operate an LS gate directly on hyperfine clock states, achieving gate fidelities of $99.74(4)%$ using modest laser power at visible wavelengths. Current gate infidelities appear to be dominated by technical noise, and theoretical modeling suggests a path towards gate fidelity above $99.99%$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا