ترغب بنشر مسار تعليمي؟ اضغط هنا

M31 PAndromeda Cepheid sample observed in four HST bands

57   0   0.0 ( 0 )
 نشر من قبل Mihael Kodric
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the M31 PAndromeda Cepheid sample and the HST PHAT data we obtain the largest Cepheid sample in M31 with HST data in four bands. For our analysis we consider three samples: A very homogeneous sample of Cepheids based on the PAndromeda data, the mean magnitude corrected PAndromeda sample and a sample complementing the PAndromeda sample with Cepheids from literature. The latter results in the largest catalog with 522 fundamental mode (FM) Cepheids and 102 first overtone (FO) Cepheids with F160W and F110W data and 559 FM Cepheids and 111 FO Cepheids with F814W and F475W data. The obtained dispersion of the Period-Luminosity relations (PLRs) is very small (e.g. 0.138 mag in the F160W sample I PLR). We find no broken slope in the PLRs when analyzing our entire sample, but we do identify a subsample of Cepheids that causes the broken slope. However, this effect only shows when the number of this Cepheid type makes up a significant fraction of the total sample. We also analyze the sample selection effect on the Hubble constant.



قيم البحث

اقرأ أيضاً

We present the largest Cepheid sample in M31 based on the complete Pan-STARRS1 survey of Andromeda (PAndromeda) in the $r_{mathrm{P1}}$ , $i_{mathrm{P1}}$ and $g_{mathrm{P1}}$ bands. We find 2686 Cepheids with 1662 fundamental mode Cepheids, 307 firs t-overtone Cepheids, 278 type II Cepheids and 439 Cepheids with undetermined Cepheid type. Using the method developed by Kodric et al. (2013) we identify Cepheids by using a three dimensional parameter space of Fourier parameters of the Cepheid light curves combined with a color cut and other selection criteria. This is an unbiased approach to identify Cepheids and results in a homogeneous Cepheid sample. The Period-Luminosity relations obtained for our sample have smaller dispersions than in our previous work. We find a broken slope that we previously observed with HST data in Kodric et al. (2015), albeit with a lower significance.
We present accurate photometric redshifts for galaxies observed by the Cluster Lensing and Supernova survey with Hubble (CLASH). CLASH observed 25 massive galaxy cluster cores with the Hubble Space Telescope in 16 filters spanning 0.2 - 1.7 $mu$m. Ph otometry in such crowded fields is challenging. Compared to our previously released catalogs, we make several improvements to the photometry, including smaller apertures, ICL subtraction, PSF matching, and empirically measured uncertainties. We further improve the Bayesian Photometric Redshift (BPZ) estimates by adding a redder elliptical template and by inflating the photometric uncertainties of the brightest galaxies. The resulting photometric redshift accuracies are dz/(1+z) $sim$ 0.8%, 1.0%, and 2.0% for galaxies with I-band F814W AB magnitudes $<$ 18, 20, and 23, respectively. These results are consistent with our expectations. They improve on our previously reported accuracies by a factor of 4 at the bright end and a factor of 2 at the faint end. Our new catalog includes 1257 spectroscopic redshifts, including 382 confirmed cluster members. We also provide stellar mass estimates. Finally, we include lensing magnification estimates of background galaxies based on our public lens models. Our new catalog of all 25 CLASH clusters is available via MAST. The analysis techniques developed here will be useful in other surveys of crowded fields, including the Frontier Fields and surveys carried out with J-PAS and JWST.
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-det ached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey (Massey et al. 2006) and select 13 candidates brighter than 20.5 magnitude in V. The relative physical parameters of these detached candidates are further characterized with Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor (2005). We will followup the detached eclipsing binaries spectroscopically and determine the distance to M31.
136 - C.-H. Lee , M. Kodric , S. Seitz 2013
We present a sample of M31 beat Cepheids from the Pan-STARRS 1 PAndromeda campaign. By analyzing three years of PAndromeda data, we identify seventeen beat Cepheids, spreading from a galactocentric distance of 10 to 16 kpc. Since the relation between fundamental mode period and the ratio of fundamental to the first overtone period puts a tight constraint on metallicity we are able to derive the metallicity at the position of the beat Cepheids using the relations from the model of Buchler (2008). Our metallicity estimates show subsolar values within 15 kpc, similar to the metallicities from HII regions (Zurita & Bresolin 2012). We then use the metallicity estimates to calculate the metallicity gradient of the M31 disk, which we find to be closer to the metallicity gradient derived from planetary nebulae (Kwitter et al. 2012) than the metallicity gradient from HII regions (Zurita & Bresolin 2012).
The Pan-STARRS 1 (PS1) survey of M31 (PAndromeda) is designed to identify gravitational microlensing events, caused by bulge and disk stars (self-lensing) and by compact matter in the halos of M31 and the Milky Way (halo lensing, or lensing by MACHOs ). With the 7 deg2 FOV of PS1, the entire disk of M31 can be imaged with one single pointing. Our aim is to monitor M31 with this wide FOV with daily sampling (20 mins/day). In the 2010 season we acquired in total 91 nights towards M31, with 90 nights in the rP1 and 66 nights in the iP1. The total integration time in rP1 and iP1 are 70740s and 36180s, respectively. As a preliminary analysis, we study a 40times40 sub-field in the central region of M31, a 20times20 sub-field in the disk of M31 and a 20times20 sub-field for the investigation of astrometric precision. We demonstrate that the PSF is good enough to detect microlensing events. We present light curves for 6 candidate microlensing events. This is a competitive rate compared to previous M31 microlensing surveys. We finally also present one example light curve for Cepheids, novae and eclipsing binaries in these sub-fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا