ﻻ يوجد ملخص باللغة العربية
Secure communication over a wiretap channel is investigated, in which an active adversary modifies the state of the channel and the legitimate transmitter has the opportunity to sense and learn the adversarys actions. The adversary has the ability to switch the channel state and observe the corresponding output at every channel use while the encoder has causal access to observations that depend on the adversarys actions. A joint learning/transmission scheme is developed in which the legitimate users learn and adapt to the adversarys actions. For some channel models, it is shown that the achievable rates, defined precisely for the problem, are arbitrarily close to those obtained with hindsight, had the transmitter known the actions ahead of time. This initial study suggests that there is much to exploit and gain in physical-layer security by learning the adversary, e.g., monitoring the environment.
Secure communication with feedback is studied. An achievability scheme in which the backward channel is used to generate a shared secret key is proposed. The scenario of binary symmetric forward and backward channels is considered, and a combination
Wireless communication is susceptible to eavesdropping attacks because of its broadcast nature. This paper illustrates how interference can be used to counter eavesdropping and assist secrecy. In particular, a wire-tap channel with a helping interfer
Wireless communication is susceptible to adversarial eavesdropping due to the broadcast nature of the wireless medium. In this paper it is shown how eavesdropping can be alleviated by exploiting the superposition property of the wireless medium. A wi
This paper considers a scenario in which an Alice-Bob pair wishes to communicate in secret in the presence of an active Eve, who is capable of jamming as well as eavesdropping in Full-Duplex (FD) mode. As countermeasure, Bob also operates in FD mode,
This paper considers a distributed storage system, where multiple storage nodes can be reconstructed simultaneously at a centralized location. This centralized multi-node repair (CMR) model is a generalization of regenerating codes that allow for ban