ﻻ يوجد ملخص باللغة العربية
Wireless communication is susceptible to eavesdropping attacks because of its broadcast nature. This paper illustrates how interference can be used to counter eavesdropping and assist secrecy. In particular, a wire-tap channel with a helping interferer (WT-HI) is considered. Here, a transmitter sends a confidential message to its intended receiver in the presence of a passive eavesdropper and with the help of an independent interferer. The interferer, which does not know the confidential message, helps in ensuring the secrecy of the message by sending an independent signal. An achievable secrecy rate and several computable outer bounds on the secrecy capacity of the WT-HI are given for both discrete memoryless and Gaussian channels.
Wireless communication is susceptible to adversarial eavesdropping due to the broadcast nature of the wireless medium. In this paper it is shown how eavesdropping can be alleviated by exploiting the superposition property of the wireless medium. A wi
The unique information ($UI$) is an information measure that quantifies a deviation from the Blackwell order. We have recently shown that this quantity is an upper bound on the one-way secret key rate. In this paper, we prove a triangle inequality fo
We consider an extension of Masseys construction of secret sharing schemes using linear codes. We describe the access structure of the scheme and show its connection to the dual code. We use the $g$-fold weight enumerator and invariant theory to study the access structure.
Full-duplex (FD) communication is regarded as a key technology in future 5G and Internet of Things (IoT) systems. In addition to high data rate constraints, the success of these systems depends on the ability to allow for confidentiality and security
In this paper, we study the problem of distributed multi-user secret sharing, including a trusted master node, $Nin mathbb{N}$ storage nodes, and $K$ users, where each user has access to the contents of a subset of storage nodes. Each user has an ind