ﻻ يوجد ملخص باللغة العربية
We present two Diffusion Monte Carlo (DMC) algorithms for systems of ultracold quantum gases featuring synthetic spin-orbit interactions. The first one is a discrete spin generalization of the T- moves spin-orbit DMC, which provides an upper bound to the fixed-phase energy. The second is a spin-integrated DMC method which recovers the fixed-phase property by avoiding the definition of the effective Hamiltonian involved in the T-moves approach. The latter is a more accurate method but it is restricted to spin-independent two-body interactions. We report a comparison between both algorithms for different systems. As a check of the efficiency of both methods, we compare the DMC energies with results obtained with other numerical methods, finding agreement between both estimation
Spin-orbit-coupled Bose-Einstein condensates (SOBECs) exhibit two new phases of matter, now known as the stripe and plane-wave phases. When two interacting spin components of a SOBEC spatially overlap, density modulations with periodicity given by th
Phases of matter are conventionally characterized by order parameters describing the type and degree of order in a system. For example, crystals consist of spatially ordered arrays of atoms, an order that is lost as the crystal melts. Like- wise in f
We show that double-quantum spin vortices, which are characterized by doubly quantized circulating spin currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit coupled Bose gases. It is found that the SU(3) spin-orb
This Dissertation presents results of a thorough study of ultracold bosonic and fermionic gases in three-dimensional and quasi-one-dimensional systems. Although the analyses are carried out within various theoretical frameworks (Gross-Pitaevskii, Bet
Chirality represents a kind of symmetry breaking characterized by the noncoincidence of an object with its mirror image and has been attracting intense attention in a broad range of scientific areas. The recent realization of spin-orbit coupling in u