ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon propagation through dissipative Rydberg media at large input rates

120   0   0.0 ( 0 )
 نشر من قبل Przemyslaw Bienias
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dissipative propagation of quantized light in interacting Rydberg media under the conditions of electromagnetically induced transparency (EIT). Rydberg blockade physics in optically dense atomic media leads to strong dissipative interactions between single photons. The regime of high incoming photon flux constitutes a challenging many-body dissipative problem. We experimentally study in detail for the first time the pulse shapes and the second-order correlation function of the outgoing field and compare our data with simulations based on two novel theoretical approaches well-suited to treat this many-photon limit. At low incoming flux, we report good agreement between both theories and the experiment. For higher input flux, the intensity of the outgoing light is lower than that obtained from theoretical predictions. We explain this discrepancy using a simple phenomenological model taking into account pollutants, which are nearly-stationary Rydberg excitations coming from the reabsorption of scattered probe photons. At high incoming photon rates, the blockade physics results in unconventional shapes of measured correlation functions.

قيم البحث

اقرأ أيضاً

We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark state polaritons under realistic assumptions. Within this model, we analyze the driven-dissipative transport of polaritons through the system by considering a coherent drive on one side and by including the spontaneous emission of the metastable Rydberg state. Using a variational approch to solve the many-body problem, we find strong antibunching of the outgoing photons despite the losses from the Rydberg state decay.
We observe interaction-induced broadening of the two-photon 5s-18s transition in 87Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly two orders of magnitude with increasing atomic density and excitation strength, wi th corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with spontaneously created populations of nearby np states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms.
We study ensembles of Rydberg atoms in a confined electromagnetic environment such as provided by a microwave cavity. The competition between standard free space Ising type and cavity-mediated interactions leads to the emergence of different regimes where the particle-particle couplings range from the typical van der Waals $r^{-6}$ behavior to $r^{-3}$ and to $r$-independence. We apply a Ramsey spectroscopic technique to map the two-body interactions into a characteristic signal such as intensity and contrast decay curves. As opposed to previous treatments requiring high-densities for considerable contrast and phase decay, the cavity scenario can exhibit similar behavior at much lower densities.
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macro scopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a $p$-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, $n$. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.
82 - M. Morgado , S. Whitlock 2020
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a competitive physical platform for quantum simulation and computing, where high-fidelity state preparation and readout, quantum logic gates and controlled quantum d ynamics of more than 100 qubits have all been demonstrated. These systems are now approaching the point where reliable quantum computations with hundreds of qubits and realistically thousands of multiqubit gates with low error rates should be within reach for the first time. In this article we give an overview of the Rydberg quantum toolbox, emphasizing the high degree of flexibility for encoding qubits, performing quantum operations and engineering quantum many-body Hamiltonians. We then review the state-of-the-art concerning high-fidelity quantum operations and logic gates as well as quantum simulations in many-body regimes. Finally, we discuss computing schemes that are particularly suited to the Rydberg platform and some of the remaining challenges on the road to general purpose quantum simulators and quantum computers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا