ﻻ يوجد ملخص باللغة العربية
We report on the first realization of heteronuclear dipolar quantum mixtures of highly magnetic erbium and dysprosium atoms. With a versatile experimental setup, we demonstrate binary Bose-Einstein condensation in five different Er-Dy isotope combinations, as well as one Er-Dy Bose-Fermi mixture. Finally, we present first studies of the interspecies interaction between the two species for one mixture.
We report on the realization of quantum degenerate gas mixtures of the alkaline-earth element strontium with the alkali element rubidium. A key ingredient of our scheme is sympathetic cooling of Rb by Sr atoms that are continuously laser cooled on a
We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a magic polarization for which the polarizabilities of t
We present our technique to create a magneto-optical trap for dysprosium atoms using the narrow-line cooling transition at 626$,$nm to achieve suitable conditions for direct loading into an optical dipole trap. The magneto-optical trap is loaded from
We report on the observation of weakly-bound dimers of bosonic Dysprosium with a strong universal s-wave halo character, associated with broad magnetic Feshbach resonances. These states surprisingly decouple from the chaotic backgound of narrow reson
Recently achieved two-component dipolar Bose-Einstein condensates open exciting possibilities for the study of mixtures of ultra-dilute quantum liquids. While non-dipolar self-bound mixtures are necessarily miscible with an approximately fixed ratio