ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum degenerate mixtures of strontium and rubidium atoms

129   0   0.0 ( 0 )
 نشر من قبل Florian Schreck
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the realization of quantum degenerate gas mixtures of the alkaline-earth element strontium with the alkali element rubidium. A key ingredient of our scheme is sympathetic cooling of Rb by Sr atoms that are continuously laser cooled on a narrow linewidth transition. This versatile technique allows us to produce ultracold gas mixtures with a phase-space density of up to 0.06 for both elements. By further evaporative cooling we create double Bose-Einstein condensates of 87Rb with either 88Sr or 84Sr, reaching more than 10^5 condensed atoms per element for the 84Sr-87Rb mixture. These quantum gas mixtures constitute an important step towards the production of a quantum gas of polar, open-shell RbSr molecules.



قيم البحث

اقرأ أيضاً

We report the production of quantum degenerate Bose-Bose mixtures of Cs and Yb with both attractive (Cs + $^{174}$Yb) and repulsive (Cs + $^{170}$Yb) interspecies interactions. Dual-species evaporation is performed in a bichromatic optical dipole tra p that combines light at 1070 nm and 532 nm to enable control of the relative trap depths for Cs and Yb. Maintaining a trap which is shallower for Yb throughout the evaporation leads to highly efficient sympathetic cooling of Cs for both isotopic combinations at magnetic fields close to the Efimov minimum in the Cs three-body recombination rate at around 22 G. For Cs + $^{174}$Yb, we produce quantum mixtures with typical atom numbers of $N_mathrm{Yb} sim 5 times 10^4$ and $N_mathrm{Cs} sim 5 times 10^3$. We find that the attractive interspecies interaction (characterised by the scattering length $a_mathrm{CsYb} = -75,a_0$) is stabilised by the repulsive intraspecies interactions. For Cs + $^{170}$Yb, we produce quantum mixtures with typical atom numbers of $N_mathrm{Yb} sim 4 times 10^4$, and $N_mathrm{Cs} sim 1 times 10^4$. Here, the repulsive interspecies interaction ($a_mathrm{CsYb} = 96,a_0$) can overwhelm the intraspecies interactions, such that the mixture sits in a region of partial miscibility.
84 - A. Trautmann 2018
We report on the first realization of heteronuclear dipolar quantum mixtures of highly magnetic erbium and dysprosium atoms. With a versatile experimental setup, we demonstrate binary Bose-Einstein condensation in five different Er-Dy isotope combina tions, as well as one Er-Dy Bose-Fermi mixture. Finally, we present first studies of the interspecies interaction between the two species for one mixture.
128 - Simon Stellmer , Rudolf Grimm , 2012
We report on an improved scheme to generate Bose-Einstein condensates (BECs) and degenerate Fermi gases of strontium. This scheme allows us to create quantum gases with higher atom number, a shorter time of the experimental cycle, or deeper quantum d egeneracy than before. We create a BEC of 84-Sr exceeding 10^7 atoms, which is a 30-fold improvement over previously reported experiments. We increase the atom number of 86-Sr BECs to 2.5x10^4 (a fivefold improvement), and refine the generation of attractively interacting 88-Sr BECs. We present a scheme to generate 84-Sr BECs with a cycle time of 2s, which, to the best of our knowledge, is the shortest cycle time of BEC experiments ever reported. We create deeply-degenerate 87-Sr Fermi gases with T/T_F as low as 0.10(1), where the number of populated nuclear spin states can be set to any value between one and ten. Furthermore, we report on a total of five different double-degenerate Bose-Bose and Bose-Fermi mixtures. These studies prepare an excellent starting point for applications of strontium quantum gases anticipated in the near future.
Radiofrequency (RF)-dressed potentials are a promising technique for manipulating atomic mixtures, but so far little work has been undertaken to understand the collisions of atoms held within these traps. In this work, we dress a mixture of 85Rb and 87Rb with RF radiation, characterize the inelastic loss that occurs, and demonstrate species-selective manipulations. Our measurements show the loss is caused by two-body 87Rb+85Rb collisions, and we show the inelastic rate coefficient varies with detuning from the RF resonance. We explain our observations using quantum scattering calculations, which give reasonable agreement with the measurements. The calculations consider magnetic fields both perpendicular to the plane of RF polarization and tilted with respect to it. Our findings have important consequences for future experiments that dress mixtures with RF fields.
We demonstrate single-atom resolved imaging with a survival probability of $0.99932(8)$ and a fidelity of $0.99991(1)$, enabling us to perform repeated high-fidelity imaging of single atoms in tweezers for thousands of times. We further observe lifet imes under laser cooling of more than seven minutes, an order of magnitude longer than in previous tweezer studies. Experiments are performed with strontium atoms in $813.4~text{nm}$ tweezer arrays, which is at a magic wavelength for the clock transition. Tuning to this wavelength is enabled by off-magic Sisyphus cooling on the intercombination line, which lets us choose the tweezer wavelength almost arbitrarily. We find that a single not retro-reflected cooling beam in the radial direction is sufficient for mitigating recoil heating during imaging. Moreover, this cooling technique yields temperatures below $5~mu$K, as measured by release and recapture. Finally, we demonstrate clock-state resolved detection with average survival probability of $0.996(1)$ and average state detection fidelity of $0.981(1)$. Our work paves the way for atom-by-atom assembly of large defect-free arrays of alkaline-earth atoms, in which repeated interrogation of the clock transition is an imminent possibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا