ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Simple Models with Confidence Profiles

75   0   0.0 ( 0 )
 نشر من قبل Karthikeyan Shanmugam
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a new method called ProfWeight for transferring information from a pre-trained deep neural network that has a high test accuracy to a simpler interpretable model or a very shallow network of low complexity and a priori low test accuracy. We are motivated by applications in interpretability and model deployment in severely memory constrained environments (like sensors). Our method uses linear probes to generate confidence scores through flattened intermediate representations. Our transfer method involves a theoretically justified weighting of samples during the training of the simple model using confidence scores of these intermediate layers. The value of our method is first demonstrated on CIFAR-10, where our weighting method significantly improves (3-4%) networks with only a fraction of the number of Resnet blocks of a complex Resnet model. We further demonstrate operationally significant results on a real manufacturing problem, where we dramatically increase the test accuracy of a CART model (the domain standard) by roughly 13%.

قيم البحث

اقرأ أيضاً

Extracting actionable intelligence from distributed, heterogeneous, correlated and high-dimensional data sources requires run-time processing and learning both locally and globally. In the last decade, a large number of meta-learning techniques have been proposed in which local learners make online predictions based on their locally-collected data instances, and feed these predictions to an ensemble learner, which fuses them and issues a global prediction. However, most of these works do not provide performance guarantees or, when they do, these guarantees are asymptotic. None of these existing works provide confidence estimates about the issued predictions or rate of learning guarantees for the ensemble learner. In this paper, we provide a systematic ensemble learning method called Hedged Bandits, which comes with both long run (asymptotic) and short run (rate of learning) performance guarantees. Moreover, our approach yields performance guarantees with respect to the optimal local prediction strategy, and is also able to adapt its predictions in a data-driven manner. We illustrate the performance of Hedged Bandits in the context of medical informatics and show that it outperforms numerous online and offline ensemble learning methods.
106 - Lei Feng , Senlin Shu , Nan Lu 2020
To alleviate the data requirement for training effective binary classifiers in binary classification, many weakly supervised learning settings have been proposed. Among them, some consider using pairwise but not pointwise labels, when pointwise label s are not accessible due to privacy, confidentiality, or security reasons. However, as a pairwise label denotes whether or not two data points share a pointwise label, it cannot be easily collected if either point is equally likely to be positive or negative. Thus, in this paper, we propose a novel setting called pairwise comparison (Pcomp) classification, where we have only pairs of unlabeled data that we know one is more likely to be positive than the other. Firstly, we give a Pcomp data generation process, derive an unbiased risk estimator (URE) with theoretical guarantee, and further improve URE using correction functions. Secondly, we link Pcomp classification to noisy-label learning to develop a progressive URE and improve it by imposing consistency regularization. Finally, we demonstrate by experiments the effectiveness of our methods, which suggests Pcomp is a valuable and practically useful type of pairwise supervision besides the pairwise label.
There has been recent interest in improving performance of simple models for multiple reasons such as interpretability, robust learning from small data, deployment in memory constrained settings as well as environmental considerations. In this paper, we propose a novel method SRatio that can utilize information from high performing complex models (viz. deep neural networks, boosted trees, random forests) to reweight a training dataset for a potentially low performing simple model of much lower complexity such as a decision tree or a shallow network enhancing its performance. Our method also leverages the per sample hardness estimate of the simple model which is not the case with the prior works which primarily consider the complex models confidences/predictions and is thus conceptually novel. Moreover, we generalize and formalize the concept of attaching probes to intermediate layers of a neural network to other commonly used classifiers and incorporate this into our method. The benefit of these contributions is witnessed in the experiments where on 6 UCI datasets and CIFAR-10 we outperform competitors in a majority (16 out of 27) of the cases and tie for best performance in the remaining cases. In fact, in a couple of cases, we even approach the complex models performance. We also conduct further experiments to validate assertions and intuitively understand why our method works. Theoretically, we motivate our approach by showing that the weighted loss minimized by simple models using our weighting upper bounds the loss of the complex model.
Constrained Markov Decision Processes are a class of stochastic decision problems in which the decision maker must select a policy that satisfies auxiliary cost constraints. This paper extends upper confidence reinforcement learning for settings in w hich the reward function and the constraints, described by cost functions, are unknown a priori but the transition kernel is known. Such a setting is well-motivated by a number of applications including exploration of unknown, potentially unsafe, environments. We present an algorithm C-UCRL and show that it achieves sub-linear regret ($ O(T^{frac{3}{4}}sqrt{log(T/delta)})$) with respect to the reward while satisfying the constraints even while learning with probability $1-delta$. Illustrative examples are provided.
Automated machine learning (AutoML) can produce complex model ensembles by stacking, bagging, and boosting many individual models like trees, deep networks, and nearest neighbor estimators. While highly accurate, the resulting predictors are large, s low, and opaque as compared to their constituents. To improve the deployment of AutoML on tabular data, we propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks. At the heart of our approach is a data augmentation strategy based on Gibbs sampling from a self-attention pseudolikelihood estimator. Across 30 datasets spanning regression and binary/multiclass classification tasks, FAST-DAD distillation produces significantly better individual models than one obtains through standard training on the original data. Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا