ﻻ يوجد ملخص باللغة العربية
In this short note we consider the oriented vertex Turan problem in the hypercube: for a fixed oriented graph $overrightarrow{F}$, determine the maximum size $ex_v(overrightarrow{F}, overrightarrow{Q_n})$ of a subset $U$ of the vertices of the oriented hypercube $overrightarrow{Q_n}$ such that the induced subgraph $overrightarrow{Q_n}[U]$ does not contain any copy of $overrightarrow{F}$. We obtain the exact value of $ex_v(overrightarrow{P_k}, overrightarrow{Q_n})$ for the directed path $overrightarrow{P_k}$, the exact value of $ex_v(overrightarrow{V_2}, overrightarrow{Q_n})$ for the directed cherry $overrightarrow{V_2}$ and the asymptotic value of $ex_v(overrightarrow{T}, overrightarrow{Q_n})$ for any directed tree $overrightarrow{T}$.
Let $H$ be a graph and $tgeq sgeq 2$ be integers. We prove that if $G$ is an $n$-vertex graph with no copy of $H$ and no induced copy of $K_{s,t}$, then $lambda(G) = Oleft(n^{1-1/s}right)$ where $lambda(G)$ is the spectral radius of the adjacency mat
We find the asymptotic behavior of the Steiner k-diameter of the $n$-cube if $k$ is large. Our main contribution is the lower bound, which utilizes the probabilistic method.
Classical questions in extremal graph theory concern the asymptotics of $operatorname{ex}(G, mathcal{H})$ where $mathcal{H}$ is a fixed family of graphs and $G=G_n$ is taken from a `standard increasing sequence of host graphs $(G_1, G_2, dots)$, most
The Tur{a}n inequalities and the higher order Tur{a}n inequalities arise in the study of Maclaurin coefficients of an entire function in the Laguerre-P{o}lya class. A real sequence ${a_{n}}$ is said to satisfy the Tur{a}n inequalities if for $ngeq 1$
Combining two classical notions in extremal combinatorics, the study of Ramsey-Turan theory seeks to determine, for integers $mle n$ and $p leq q$, the number $mathsf{RT}_p(n,K_q,m)$, which is the maximum size of an $n$-vertex $K_q$-free graph in whi