ﻻ يوجد ملخص باللغة العربية
Let $H$ be a graph and $tgeq sgeq 2$ be integers. We prove that if $G$ is an $n$-vertex graph with no copy of $H$ and no induced copy of $K_{s,t}$, then $lambda(G) = Oleft(n^{1-1/s}right)$ where $lambda(G)$ is the spectral radius of the adjacency matrix of $G$. Our results are motivated by results of Babai, Guiduli, and Nikiforov bounding the maximum spectral radius of a graph with no copy (not necessarily induced) of $K_{s,t}$.
In this short note we consider the oriented vertex Turan problem in the hypercube: for a fixed oriented graph $overrightarrow{F}$, determine the maximum size $ex_v(overrightarrow{F}, overrightarrow{Q_n})$ of a subset $U$ of the vertices of the orient
Given a family of graphs $mathcal{F}$, we prove that the normalized edit distance of any given graph $Gamma$ to being induced $mathcal{F}$-free is estimable with a query complexity that depends only on the bounds of the Frieze--Kannan Regularity Lemma and on a Removal Lemma for $mathcal{F}$.
Combining two classical notions in extremal combinatorics, the study of Ramsey-Turan theory seeks to determine, for integers $mle n$ and $p leq q$, the number $mathsf{RT}_p(n,K_q,m)$, which is the maximum size of an $n$-vertex $K_q$-free graph in whi
Given $r$-uniform hypergraphs $G$ and $H$ the Turan number $rm ex(G, H)$ is the maximum number of edges in an $H$-free subgraph of $G$. We study the typical value of $rm ex(G, H)$ when $G=G_{n,p}^{(r)}$, the ErdH{o}s-Renyi random $r$-uniform hypergra
For given graphs $G$ and $F$, the Turan number $ex(G,F)$ is defined to be the maximum number of edges in an $F$-free subgraph of $G$. Foucaud, Krivelevich and Perarnau and later independently Briggs and Cox introduced a dual version of this problem w