ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative entropies of quantum channels with applications in resource theory

184   0   0.0 ( 0 )
 نشر من قبل Xiao Yuan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xiao Yuan




اسأل ChatGPT حول البحث

Entropic quantifiers of states lie at the cornerstone of the quantum information theory. While a quantum state can be abstracted as a device that only has outputs, the most general quantum device is a quantum channel that also has inputs. In this work, we extend the entropic quantifiers of states to the ones of channels. In the one-shot and asymptotic scenarios, we propose relative entropies of channels under the task of hypothesis testing. Then, we define the entropy of channels based on relative entropies from the target channel to the completely depolarising channel. We also study properties of relative entropies of channels and the interplay with entanglement. Finally, based on relative entropies of channels, we propose general resource theories of channels and discuss the coherence of general channels and measurements, and the entanglement of channels.



قيم البحث

اقرأ أيضاً

We provide lower and upper bounds on the information transmission capacity of one single use of a classical-quantum channel. The lower bound is expressed in terms of the Hoeffding capacity, that we define similarly to the Holevo capacity, but replaci ng the relative entropy with the Hoeffding distance. Similarly, our upper bound is in terms of a quantity obtained by replacing the relative entropy with the recently introduced max-relative entropy in the definition of the divergence radius of a channel.
147 - Xin Wang , Mark M. Wilde 2019
This paper develops the resource theory of asymmetric distinguishability for quantum channels, generalizing the related resource theory for states [arXiv:1010.1030; arXiv:1905.11629]. The key constituents of the channel resource theory are quantum ch annel boxes, consisting of a pair of quantum channels, which can be manipulated for free by means of an arbitrary quantum superchannel (the most general physical transformation of a quantum channel). One main question of the resource theory is the approximate channel box transformation problem, in which the goal is to transform an initial channel box (or boxes) to a final channel box (or boxes), while allowing for an asymmetric error in the transformation. The channel resource theory is richer than its counterpart for states because there is a wider variety of ways in which this question can be framed, either in the one-shot or $n$-shot regimes, with the latter having parallel and sequential variants. As in our prior work [arXiv:1905.11629], we consider two special cases of the general channel box transformation problem, known as distinguishability distillation and dilution. For the one-shot case, we find that the optimal values of the various tasks are equal to the non-smooth or smooth channel min- or max-relative entropies, thus endowing all of these quantities with operational interpretations. In the asymptotic sequential setting, we prove that the exact distinguishability cost is equal to the channel max-relative entropy and the distillable distinguishability is equal to the amortized channel relative entropy of [arXiv:1808.01498]. This latter result can also be understood as a solution to Steins lemma for quantum channels in the sequential setting. Finally, the theory simplifies significantly for environment-seizable and classical--quantum channel boxes.
We define the quantum-incoherent relative entropy of coherence ($mathcal{QI}$ REC) of quantum channels in the framework of the resource theory by using the Choi-Jamiolkowsky isomorphism. Coherence-breaking channels are introduced as free operations a nd their corresponding Choi states as free states. We also show the relationship between the coherence of channel and the quantum discord and find that basis-dependent quantum asymmetric discord can never be more than the $mathcal{QI}$ REC for any quantum channels. {Also}, we prove the $mathcal{QI}$ REC is decreasing for any divisible quantum incoherent channel and we also claim it can be considered as the quantumness of quantum channels. Moreover, we demonstrate that for qubit channels, the relative entropy of coherence (REC) can be equivalent to the REC of their corresponding Choi states and the basis-dependent quantum symmetric discord can never exceed the coherence.
160 - M. Mosonyi , F. Hiai 2009
We show that the quantum $alpha$-relative entropies with parameter $alphain (0,1)$ can be represented as generalized cutoff rates in the sense of [I. Csiszar, IEEE Trans. Inf. Theory 41, 26-34, (1995)], which provides a direct operational interpretat ion to the quantum $alpha$-relative entropies. We also show that various generalizations of the Holevo capacity, defined in terms of the $alpha$-relative entropies, coincide for the parameter range $alphain (0,2]$, and show an upper bound on the one-shot epsilon-capacity of a classical-quantum channel in terms of these capacities.
We show that the new quantum extension of Renyis alpha-relative entropies, introduced recently by Muller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013), and Wilde, Winter, Yang, Commun. Math. Phys. 331, (2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Renyi relative entropies depends on the parameter alpha: for alpha<1, the right choice seems to be the traditional definition, whereas for alpha>1 the right choice is the newly introduced version. As a sideresult, we show that the new Renyi alpha-relative entropies are asymptotically attainable by measurements for alpha>1, and give a new simple proof for their monotonicity under completely positive trace-preserving maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا