ﻻ يوجد ملخص باللغة العربية
We propose and experimentally demonstrate a method of polarization-sensitive quantitative phase imaging using two photo detectors. Instead of recording wide-field interference patterns, finding the modulation patterns maximizing focused intensities in terms of the polarization states enables polarization-dependent quantitative phase imaging without the need for a reference beam and an image sensor. The feasibility of the present method is experimentally validated by reconstructing Jones matrices of various samples including a polystyrene microsphere, a maize starch granule, and a rat retinal nerve fiber layer. Since the present method is simple and sufficiently general, we expect that it may offer solutions for quantitative phase imaging of birefringent materials.
We present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vi
One of the fundamental limitations in photonics is the lack of a bidirectional transducer that can convert optical information into electronic signals or vice versa. In acoustics or at microwave frequencies, wave signals can be simultaneously measure
Imaging applications in the terahertz (THz) frequency range are severely restricted by diffraction. Near-field scanning probe microscopy is commonly employed to enable mapping of the THz electromagnetic fields with sub-wavelength spatial resolution,
High space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low cohe
We present differential phase-contrast optical coherence tomography (DPC-OCT) with two transversally separated probing beams to sense phase gradients in various directions by employing a rotatable Wollaston prism. In combination with a two-dimensiona