ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-supervised Feature Learning For Improving Writer Identification

123   0   0.0 ( 0 )
 نشر من قبل Zehong Cao Dr.
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Data augmentation is usually used by supervised learning approaches for offline writer identification, but such approaches require extra training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipeline was proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we proposed a weighted label smoothing regularization (WLSR) method for data augmentation, which assigned the weighted uniform label distribution to the extra unlabeled data. The WLSR method could regularize the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach could significantly improve the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline write identification.

قيم البحث

اقرأ أيضاً

Federated learning (FL) is a promising way to use the computing power of mobile devices while maintaining the privacy of users. Current work in FL, however, makes the unrealistic assumption that the users have ground-truth labels on their devices, wh ile also assuming that the server has neither data nor labels. In this work, we consider the more realistic scenario where the users have only unlabeled data, while the server has some labeled data, and where the amount of labeled data is smaller than the amount of unlabeled data. We call this learning problem semi-supervised federated learning (SSFL). For SSFL, we demonstrate that a critical issue that affects the test accuracy is the large gradient diversity of the models from different users. Based on this, we investigate several design choices. First, we find that the so-called consistency regularization loss (CRL), which is widely used in semi-supervised learning, performs reasonably well but has large gradient diversity. Second, we find that Batch Normalization (BN) increases gradient diversity. Replacing BN with the recently-proposed Group Normalization (GN) can reduce gradient diversity and improve test accuracy. Third, we show that CRL combined with GN still has a large gradient diversity when the number of users is large. Based on these results, we propose a novel grouping-based model averaging method to replace the FedAvg averaging method. Overall, our grouping-based averaging, combined with GN and CRL, achieves better test accuracy than not just a contemporary paper on SSFL in the same settings (>10%), but also four supervised FL algorithms.
In this paper, we propose a new wrapper feature selection approach with partially labeled training examples where unlabeled observations are pseudo-labeled using the predictions of an initial classifier trained on the labeled training set. The wrappe r is composed of a genetic algorithm for proposing new feature subsets, and an evaluation measure for scoring the different feature subsets. The selection of feature subsets is done by assigning weights to characteristics and recursively eliminating those that are irrelevant. The selection criterion is based on a new multi-class $mathcal{C}$-bound that explicitly takes into account the mislabeling errors induced by the pseudo-labeling mechanism, using a probabilistic error model. Empirical results on different data sets show the effectiveness of our framework compared to several state-of-the-art semi-supervised feature selection approaches.
In high-dimensional data space, semi-supervised feature learning based on Euclidean distance shows instability under a broad set of conditions. Furthermore, the scarcity and high cost of labels prompt us to explore new semi-supervised learning method s with the fewest labels. In this paper, we develop a novel Minor Constraint Disturbances-based Deep Semi-supervised Feature Learning framework (MCD-DSFL) from the perspective of probability distribution for feature representation. There are two fundamental modules in the proposed framework: one is a Minor Constraint Disturbances-based restricted Boltzmann machine with Gaussian visible units (MCDGRBM) for modelling continuous data and the other is a Minor Constraint Disturbances-based restricted Boltzmann machine (MCDRBM) for modelling binary data. The Minor Constraint Disturbances (MCD) consist of less instance-level constraints which are produced by only two randomly selected labels from each class. The Kullback-Leibler (KL) divergences of the MCD are fused into the Contrastive Divergence (CD) learning for training the proposed MCDGRBM and MCDRBM models. Then, the probability distributions of hidden layer features are as similar as possible in the same class and they are as dissimilar as possible in the different classes simultaneously. Despite the weak influence of the MCD for our shallow models (MCDGRBM and MCDRBM), the proposed deep MCD-DSFL framework improves the representation capability significantly under its leverage effect. The semi-supervised strategy based on the KL divergence of the MCD significantly reduces the reliance on the labels and improves the stability of the semi-supervised feature learning in high-dimensional space simultaneously.
Semi-supervised learning (SSL) is a key approach toward more data-efficient machine learning by jointly leverage both labeled and unlabeled data. We propose AlphaMatch, an efficient SSL method that leverages data augmentations, by efficiently enforci ng the label consistency between the data points and the augmented data derived from them. Our key technical contribution lies on: 1) using alpha-divergence to prioritize the regularization on data with high confidence, achieving a similar effect as FixMatch but in a more flexible fashion, and 2) proposing an optimization-based, EM-like algorithm to enforce the consistency, which enjoys better convergence than iterative regularization procedures used in recent SSL methods such as FixMatch, UDA, and MixMatch. AlphaMatch is simple and easy to implement, and consistently outperforms prior arts on standard benchmarks, e.g. CIFAR-10, SVHN, CIFAR-100, STL-10. Specifically, we achieve 91.3% test accuracy on CIFAR-10 with just 4 labelled data per class, substantially improving over the previously best 88.7% accuracy achieved by FixMatch.
In this work, we propose a simple yet effective meta-learning algorithm in semi-supervised learning. We notice that most existing consistency-based approaches suffer from overfitting and limited model generalization ability, especially when training with only a small number of labeled data. To alleviate this issue, we propose a learn-to-generalize regularization term by utilizing the label information and optimize the problem in a meta-learning fashion. Specifically, we seek the pseudo labels of the unlabeled data so that the model can generalize well on the labeled data, which is formulated as a nested optimization problem. We address this problem using the meta-gradient that bridges between the pseudo label and the regularization term. In addition, we introduce a simple first-order approximation to avoid computing higher-order derivatives and provide theoretic convergence analysis. Extensive evaluations on the SVHN, CIFAR, and ImageNet datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا