ترغب بنشر مسار تعليمي؟ اضغط هنا

The James Webb Space Telescope North Ecliptic Pole Time-Domain Field -- I: Field Selection of a JWST Community Field for Time-Domain Studies

66   0   0.0 ( 0 )
 نشر من قبل Rolf Jansen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the selection of the James Webb Space Telescope (JWST) North Ecliptic Pole (NEP) Time-Domain Field (TDF), a ~14 diameter field located within JWSTs northern Continuous Viewing Zone (CVZ) and centered at (RA, Dec)_J2000 = (17:22:47.896, +65:49:21.54). We demonstrate that this is the only region in the sky where JWST can observe a clean (i.e., free of bright foreground stars and with low Galactic foreground extinction) extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation, and without a penalty in terms of a raised Zodiacal background. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei (AGN) to brown dwarf atmospheres, as well as proper motions of possibly extreme scattered Kuiper Belt and Inner Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. A JWST/NIRCam+NIRISS GTO program will provide an initial 0.8--5.0micron spectrophotometric characterization to m_AB ~ 28.8+/-0.3 mag of four orthogonal spokes within this field. The multi-wavelength (radio through X-ray) context of the field is in hand (ground-based near-UV--visible--near-IR), in progress (VLA 3GHz, VLBA 5GHz, HST UV--visible, Chandra X-ray, IRAM30m 1.3 and 2mm), or scheduled (JCMT 850micron). We welcome and encourage ground- and space-based follow-up of the initial GTO observations and ancillary data, to realize its potential as an ideal JWST time-domain community field.



قيم البحث

اقرأ أيضاً

The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 $mu$m ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).
We present the J and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguo us wavelength coverage from optical to MIR. For the J and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg2 area down to a 5 sigma depth of ~21.6 mag and ~21.3 mag (AB) for J and H-band with an astrometric accuracy of 0.14 and 0.17 for 1 sigma in R.A. and Decl. directions, respectively. We detected 208,020 sources for J-band and 203,832 sources for H-band. This NIR data is being used for studies including analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable dataset for various future missions.
We propose a co-ordinated multi-observatory survey at the North Ecliptic Pole. This field is the natural extragalactic deep field location for most space observatories (e.g. containing the deepest Planck, WISE and eROSITA data), is in the continuous viewing zones for e.g. Herschel, HST, JWST, and is a natural high-visibility field for the L2 halo orbit of SPICA with deep and wide-field legacy surveys already planned. The field is also a likely deep survey location for the forthcoming Euclid mission. It is already a multi-wavelength legacy field in its own right (e.g. AKARI, LOFAR, SCUBA-2): the outstanding and unparalleled continuous mid-IR photometric coverage in this field and nowhere else enables a wide range of galaxy evolution diagnostics unachievable in any other survey field, by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN hot dust. We argue from the science needs of Euclid and JWST, and from the comparative multiwavelength depths, that the logical approach is (1) a deep (H-UDF) UV/optical tile in the NEP over ~10 square arcminutes, and (2) an overlapping wide-field UV/optical HST survey tier covering >100 square arcminutes, with co-ordinated submm SPIRE mapping up to or beyond the submm point source confusion limit over a wider area and PACS data over the shallower HST tier.
The $AKARI$ infrared (IR) space telescope conducted two surveys (Deep and Wide) in the North Ecliptic Pole (NEP) field to find more than 100,000 IR sources using its Infrared Camera (IRC). IRCs 9 filters, which cover wavebands from 2 to 24 $mu$m cont inuously, make $AKARI$ unique in comparison with other IR observatories such as $Spitzer$ or $WISE$. However, studies of the $AKARI$ NEP-Wide field sources had been limited due to the lack of follow-up observations in the ultraviolet (UV) and optical. In this work, we present the Canada-France-Hawaii Telescope (CFHT) MegaPrime/MegaCam $u$-band source catalogue of the $AKARI$ NEP-Wide field. The observations were taken in 7 nights in 2015 and 2016, resulting in 82 observed frames covering 3.6 deg$^2$. The data reduction, image processing and source extraction were performed in a standard procedure using the textsc{Elixir} pipeline and the textsc{AstrOmatic} software, and eventually 351,635 sources have been extracted. The data quality is discussed in two regions (shallow and deep) separately, due to the difference in the total integration time (4,520 and 13,910 seconds). The 5$sigma$ limiting magnitude, seeing FWHM, and the magnitude at 50 per cent completeness are 25.38 mag (25.79 mag in the deep region), 0.82 arcsec (0.94 arcsec) and 25.06 mag (25.45 mag), respectively. The u-band data provide us with critical improvements to photometric redshifts and UV estimates of the precious infrared sources from the $AKARI$ space telescope.
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator for wavefront sensing and control designed to produce JWST-like images. A model of the JWST three mirror anas- tigmat is realized with three lenses in the form of a Cooke triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module. An Iris AO hexagonally segmented mirror stands in for the JWST primary. This setup successfully produces images extremely similar to expected JWST in-flight point spread functions (PSFs), and NIRCam images from cryotesting, in terms of the PSF morphology and sampling relative to the diffraction limit. The segmentation of the primary mirror into subapertures introduces complexity into wavefront sensing and control (WFS&C) of large space based telescopes like JWST. JOST provides a platform for independent analysis of WFS&C scenarios for both commissioning and maintenance activities on such ob- servatories. We present an update of the current status of the testbed including both single field and wide-field alignment results. We assess the optical quality of JOST over a wide field of view to inform the future imple- mentation of different wavefront sensing algorithms including the currently implemented Linearized Algorithm for Phase Diversity (LAPD). JOST complements other work at the Makidon Laboratory at the Space Telescope Science Institute, including the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, that investigates coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا