ﻻ يوجد ملخص باللغة العربية
Spin-orbit interaction of light can lead to the so-called optical mirages, i.e. a perceived displacement in the position of a particle due to the spiraling structure of the scattered light. In electric dipoles, the maximum displacement is subwavelength and does not depend on the optical properties of the scatterer. Here we will show that the optical mirage in high refractive index dielectric nanoparticles depends strongly on the ratio between electric and magnetic dipolar responses. When the dual symmetry is satisfied (at the first Kerker condition), there is a considerable enhancement (far above the wavelength) of the spin-orbit optical mirage which can be related to the emergence of an optical vortex in the backscattering direction.
When intense laser fields interact with nanoscale targets, strong-field physics meets plasmonic near-field enhancement and sub-wavelength localization of light. Photoemission spectra reflect the associated attosecond optical and electronic response a
The ability to control the spin-orbit interaction of light in optical microresonators is of fundamental importance for future photonics. Organic microcrystals, due to their giant optical anisotropy, play a crucial role in spin-optics and topological
The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin currents absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the
In the presence of Rashba-Dresselhaus coupling, strong spin-orbit interactions in liquid crystal optical cavities result in a distinctive spin-split entangled dispersion. Spin coherence between such modes give rise to an optical persistent-spin-helix
Presented here is the development and demonstration of a tunable cavity-enhanced terahertz frequency-domain optical Hall effect technique. The cavity consists of at least one fixed and one tunable Fabry-Perot resonator. The approach is suitable for e