ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Critical Detector : Amplifying Weak Signals Using First-Order Dynamical Quantum Phase Transitions

139   0   0.0 ( 0 )
 نشر من قبل Yang Li-Ping
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a first-order quantum-phase-transition model, which exhibits giant sensitivity $chi propto N^2$ at the critical point. Exploiting this effect, we propose a quantum critical detector (QCD) to amplify weak input signals. The time-dynamic QCD functions by triggering a first-order dynamical quantum phase transition in a system of spins with long-range interactions coupled to a bosonic mode. We numerically demonstrate features of the dynamical quantum phase transition, which leads to a time-dependent quantum gain. We also show the linear scaling with the spin number $N$ in both the quantum gain and the corresponding signal-to-quantum noise ratio of this QCD. Our QCD can be a resource for metrology, weak signal amplification, and single photon detection.



قيم البحث

اقرأ أيضاً

173 - Li-Ping Yang , Zubin Jacob 2019
The quantum critical detector (QCD), recently introduced for weak-signal amplification [Opt. Express 27, 10482 (2019)], functions by exploiting high sensitivity near the phase transition point of first-order quantum phase transitions. We contrast the behavior of the first-order as well as the second-order quantum phase transitions (QPTs) in the detector. We find that the giant sensitivity to a weak input signal, which can be utilized for quantum amplification, only exists in first-order QPTs. We define two new magnetic order parameters to quantitatively characterize the first-order QPT of the interacting spins in the detector. We also introduce the Husimi $Q$-functions as a powerful tool to show the fundamental change in the ground-state wave function of the detector during the QPTs and especially, the intrinsic dynamical change within the detector during a quantum critical amplification. We explicitly show the high figures of merit of the QCD via the quantum gain and signal-to-quantum noise ratio. Specifically, we predict the existence of a universal first-order QPT in the interacting spin system resulting from two competing ferromagnetic orders. Our results motivate new designs of weak signal detectors by engineering first-order QPTs, which are of fundamental significance in the search for new particles, quantum metrology, and information science.
Continuously monitoring the environment of a quantum many-body system reduces the entropy of (purifies) the reduced density matrix of the system, conditional on the outcomes of the measurements. We show that, for mixed initial states, a balanced comp etition between measurements and entangling interactions within the system can result in a dynamical purification phase transition between (i) a phase that locally purifies at a constant system-size-independent rate, and (ii) a mixed phase where the purification time diverges exponentially in the system size. The residual entropy density in the mixed phase implies the existence of a quantum error-protected subspace where quantum information is reliably encoded against the future non-unitary evolution of the system. We show that these codes are of potential relevance to fault-tolerant quantum computation as they are often highly degenerate and satisfy optimal tradeoffs between encoded information densities and error thresholds. In spatially local models in 1+1 dimensions, this phase transition for mixed initial states occurs concurrently with a recently identified class of entanglement phase transitions for pure initial states. The mutual information of an initially completely-mixed state in 1+1 dimensions grows sublinearly in time due to the formation of the error protected subspace. The purification transition studied here also generalizes to systems with long-range interactions, where conventional notions of entanglement transitions have to be reformulated. Purification dynamics is likely a more robust probe of the transition in experiments, where imperfections generically reduce entanglement and drive the system towards mixed states. We describe the motivations for studying this novel class of non-equilibrium quantum dynamics in the context of advanced quantum computing platforms and fault-tolerant quantum computation.
118 - D. M. Kennes , D. Schuricht , 2018
We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A$to$B$to$A). As prototype models, we consider the (inte grable) transverse field Ising as well as the (non-integrable) ANNNI model. The return amplitude features non-analyticities after the first quench through the equilibrium quantum critical point (A$to$B), which is routinely taken as a signature of passing through a so-called dynamical quantum phase transition. We demonstrate that non-analyticities after the second quench (B$to$A) can be avoided and reestablished in a recurring manner upon increasing the time $T$ spent in phase B. The system retains an infinite memory of its past state, and one has the intriguing opportunity to control at will whether or not dynamical quantum phase transitions appear after the second quench.
242 - Gaoyong Sun , Bo-Bo Wei 2020
We analytically and numerically study the Loschmidt echo and the dynamical order parameters in a spin chain with a deconfined phase transition between a dimerized state and a ferromagnetic phase. For quenches from a dimerized state to a ferromagnetic phase, we find that the model can exhibit a dynamical quantum phase transition characterized by an associating dimerized order parameters. In particular, when quenching the system from the Majumdar-Ghosh state to the ferromagnetic Ising state, we find an exact mapping into the classical Ising chain for a quench from the paramagnetic phase to the classical Ising phase by analytically calculating the Loschmidt echo and the dynamical order parameters. By contrast, for quenches from a ferromagnetic state to a dimerized state, the system relaxes very fast so that the dynamical quantum transition may only exist in a short time scale. We reveal that the dynamical quantum phase transition can occur in systems with two broken symmetry phases and the quench dynamics may be independent on equilibrium phase transitions.
In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to characterize nonequilibrium states of quantum matter. DQPTs are marked by singular behavior in an textit{effective free energy} $lambda(t)$, which, however, is a global measure, making its experimental or theoretical detection challenging in general. We introduce two local measures for the detection of DQPTs with the advantage of requiring fewer resources than the full effective free energy. The first, called the textit{real-local} effective free energy $lambda_M(t)$, is defined in real space and is therefore suitable for systems where locally resolved measurements are directly accessible such as in quantum-simulator experiments involving Rydberg atoms or trapped ions. We test $lambda_M(t)$ in Ising chains with nearest-neighbor and power-law interactions, and find that this measure allows extraction of the universal critical behavior of DQPTs. The second measure we introduce is the textit{momentum-local} effective free energy $lambda_k(t)$, which is targeted at systems where momentum-resolved quantities are more naturally accessible, such as through time-of-flight measurements in ultracold atoms. We benchmark $lambda_k(t)$ for the Kitaev chain, a paradigmatic system for topological quantum matter, in the presence of weak interactions. Our introduced local measures for effective free energies can further facilitate the detection of DQPTs in modern quantum-simulator experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا