ترغب بنشر مسار تعليمي؟ اضغط هنا

Local measures of dynamical quantum phase transitions

114   0   0.0 ( 0 )
 نشر من قبل Jad C. Halimeh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to characterize nonequilibrium states of quantum matter. DQPTs are marked by singular behavior in an textit{effective free energy} $lambda(t)$, which, however, is a global measure, making its experimental or theoretical detection challenging in general. We introduce two local measures for the detection of DQPTs with the advantage of requiring fewer resources than the full effective free energy. The first, called the textit{real-local} effective free energy $lambda_M(t)$, is defined in real space and is therefore suitable for systems where locally resolved measurements are directly accessible such as in quantum-simulator experiments involving Rydberg atoms or trapped ions. We test $lambda_M(t)$ in Ising chains with nearest-neighbor and power-law interactions, and find that this measure allows extraction of the universal critical behavior of DQPTs. The second measure we introduce is the textit{momentum-local} effective free energy $lambda_k(t)$, which is targeted at systems where momentum-resolved quantities are more naturally accessible, such as through time-of-flight measurements in ultracold atoms. We benchmark $lambda_k(t)$ for the Kitaev chain, a paradigmatic system for topological quantum matter, in the presence of weak interactions. Our introduced local measures for effective free energies can further facilitate the detection of DQPTs in modern quantum-simulator experiments.



قيم البحث

اقرأ أيضاً

In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body phys ics, out-of-equilibrium extensions of such concepts still leave much to be desired. Using exact diagonalization and the time-dependent variational principle in uniform martrix product states, we calculate the time evolution of the local order parameter and Loschmidt return rate in transverse-field Ising chains with antiferromagnetic power law-decaying interactions, and map out the corresponding rich dynamical phase diagram. textit{Anomalous} cusps in the return rate, which are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions, are absent within the accessible timescales of our simulations. We attribute this to much weaker domain-wall binding in the antiferromagnetic case. For quenches across the quantum critical point, textit{regular} cusps appear in the return rate and connect to the local order parameter changing sign, indicating the concurrence of two major concepts of dynamical phase transitions. Our results consolidate conclusions of previous works that a necessary condition for the appearance of anomalous cusps in the return rate after quenches within the ordered phase is for topologically trivial local spin flips to be the energetically dominant excitations in the spectrum of the quench Hamiltonian. Our findings are readily accessible in modern trapped-ion setups, and we outline the associated experimental considerations.
The dynamics of quantum phase transitions poses one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when c rossing the Mott insulator to superfluid quantum phase transition. In the one-dimensional Bose-Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We thereby perform a largely certified analogue quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behaviour of the coherence length, reminiscent of the Kibble-Zurek mechanism. However, we find exponents that strongly depend on the final interaction strength and thus lie outside the scope of this mechanism.
118 - D. M. Kennes , D. Schuricht , 2018
We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A$to$B$to$A). As prototype models, we consider the (inte grable) transverse field Ising as well as the (non-integrable) ANNNI model. The return amplitude features non-analyticities after the first quench through the equilibrium quantum critical point (A$to$B), which is routinely taken as a signature of passing through a so-called dynamical quantum phase transition. We demonstrate that non-analyticities after the second quench (B$to$A) can be avoided and reestablished in a recurring manner upon increasing the time $T$ spent in phase B. The system retains an infinite memory of its past state, and one has the intriguing opportunity to control at will whether or not dynamical quantum phase transitions appear after the second quench.
Generic short-range interacting quantum systems with a conserved quantity exhibit universal diffusive transport at late times. We employ non-equilibrium quantum field theory and semi-classical phase-space simulations to show how this universality is replaced by a more general transport process in a long-range XY spin chain at infinite temperature with couplings decaying algebraically with distance as $r^{-alpha}$. While diffusion is recovered for $alpha>1.5$, longer-ranged couplings with $0.5<alphaleq 1.5 $ give rise to effective classical Levy flights; a random walk with step sizes drawn from a distribution with algebraic tails. We find that the space-time dependent spin density profiles are self-similar, with scaling functions given by the stable symmetric distributions. As a consequence, for $0.5<alphaleq1.5$ autocorrelations show hydrodynamic tails decaying in time as $t^{-1/(2alpha-1)}$ and linear-response theory breaks down. Our findings can be readily verified with current trapped ion experiments.
By means of the discrete truncated Wigner approximation we study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized ferromagnetic initial condition these tr ansitions separate a phase with nonvanishing magnetization along the ordering direction from a symmetric phase upon increasing the transverse field. We consider two paradigmatic cases, a one-dimensional long-range model with power-law interactions $propto 1/r^{alpha}$ decaying algebraically as a function of distance $r$ and a two-dimensional system with short-range nearest-neighbour interactions. In the former case we identify dynamical phase transitions for $alpha lesssim 2$ and we extract the critical exponents from a data collapse of the steady state magnetization for up to 1200 lattice sites. We find identical exponents for $alpha lesssim 0.5$, suggesting that the dynamical transitions in this regime fall into the same universality class as the nonergodic mean-field limit. The two-dimensional Ising model is believed to be thermalizing, which we also confirm using exact diagonalization for small system sizes. Thus, the dynamical transition is expected to correspond to the thermal phase transition, which is consistent with our data upon comparing to equilibrium quantum Monte-Carlo simulations. We further test the accuracy of the discrete truncated Wigner approximation by comparing against numerically exact methods such as exact diagonalization, tensor network as well as artificial neural network states and we find good quantitative agreement on the accessible time scales. Finally, our work provides an additional contribution to the understanding of the range and the limitations of qualitative and quantitative applicability of the discrete truncated Wigner approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا