ﻻ يوجد ملخص باللغة العربية
We describe applications of the gluing formalism discussed in the companion paper. When a $d$-dimensional local theory $text{QFT}_d$ is supersymmetric, and if we can find a supersymmetric polarization for $text{QFT}_d$ quantized on a $(d-1)$-manifold $W$, gluing along $W$ is described by a non-local $text{QFT}_{d-1}$ that has an induced supersymmetry. Applying supersymmetric localization to $text{QFT}_{d-1}$, which we refer to as the boundary localization, allows in some cases to represent gluing by finite-dimensional integrals over appropriate spaces of supersymmetric boundary conditions. We follow this strategy to derive a number of `gluing formulas in various dimensions, some of which are new and some of which have been previously conjectured. First we show how gluing in supersymmetric quantum mechanics can reduce to a sum over a finite set of boundary conditions. Then we derive two gluing formulas for 3D $mathcal{N}=4$ theories on spheres: one providing the Coulomb branch representation of gluing, and another providing the Higgs branch representation. This allows to study various properties of their $(2,2)$-preserving boundary conditions in relation to Mirror Symmetry. After that we derive a gluing formula in 4D $mathcal{N}=2$ theories on spheres, both squashed and round. First we apply it to predict the hemisphere partition function, then we apply it to the study of boundary conditions and domain walls in these theories. Finally, we mention how to glue half-indices of 4D $mathcal{N}=2$ theories.
We review some aspects of the cutting and gluing law in local quantum field theory. In particular, we emphasize the description of gluing by a path integral over a space of polarized boundary conditions, which are given by leaves of some Lagrangian f
We construct a gluing map for stable affine vortices over the upper half plane with the Lagrangian boundary condition at a rigid, regular, codimension one configuration. This construction plays an important role in establishing the relation between t
We provide a unifying entropy functional and an extremization principle for black holes and black strings in AdS$_4times S^7$ and AdS$_5times S^5$ with arbitrary rotation and generic electric and magnetic charges. This is done by gluing gravitational
Given two semigroups $langle Arangle$ and $langle Brangle$ in ${mathbb N}^n$, we wonder when they can be glued, i.e., when there exists a semigroup $langle Crangle$ in ${mathbb N}^n$ such that the defining ideals of the corresponding semigroup rings
Farhi and others have introduced the notion of solving NP problems using adiabatic quantum com- puters. We discuss an application of this idea to the problem of integer factorization, together with a technique we call gluing which can be used to buil