ﻻ يوجد ملخص باللغة العربية
The max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. Each player $p$ has a non-negative value $v_{pr}$ on resource $r$. In the restricted case, we have $v_{pr}in {v_r, 0}$. That is, a resource $r$ is worth value $v_r$ for the players who desire it and value 0 for the other players. In this paper, we consider the configuration LP, a linear programming relaxation for the restricted problem. The integrality gap of the configuration LP is at least $2$. Asadpour, Feige, and Saberi proved an upper bound of $4$. We improve the upper bound to $23/6$ using the dual of the configuration LP. Since the configuration LP can be solved to any desired accuracy $delta$ in polynomial time, our result leads to a polynomial-time algorithm which estimates the optimal value within a factor of $23/6+delta$.
Asadpour, Feige, and Saberi proved that the integrality gap of the configuration LP for the restricted max-min allocation problem is at most $4$. However, their proof does not give a polynomial-time approximation algorithm. A lot of efforts have been
The restricted max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. It is NP-hard to approximate the problem to a ratio less than 2. Comparing the current best algo
We study a delay-sensitive information flow problem where a source streams information to a sink over a directed graph G(V,E) at a fixed rate R possibly using multiple paths to minimize the maximum end-to-end delay, denoted as the Min-Max-Delay probl
In this paper we present a new data structure for double ended priority queue, called min-max fine heap, which combines the techniques used in fine heap and traditional min-max heap. The standard operations on this proposed structure are also present
Many load balancing problems that arise in scientific computing applications ask to partition a graph with weights on the vertices and costs on the edges into a given number of almost equally-weighted parts such that the maximum boundary cost over al