ترغب بنشر مسار تعليمي؟ اضغط هنا

Min-Max Fine Heaps

126   0   0.0 ( 0 )
 نشر من قبل Suman Kumar Nath
 تاريخ النشر 2000
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a new data structure for double ended priority queue, called min-max fine heap, which combines the techniques used in fine heap and traditional min-max heap. The standard operations on this proposed structure are also presented, and their analysis indicates that the new structure outperforms the traditional one.



قيم البحث

اقرأ أيضاً

167 - Siu-Wing Cheng , Yuchen Mao 2018
The restricted max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. It is NP-hard to approximate the problem to a ratio less than 2. Comparing the current best algo rithm for estimating the optimal value with the current best for constructing an allocation, there is quite a gap between the ratios that can be achieved in polynomial time: roughly 4 for estimation and roughly $6 + 2sqrt{10}$ for construction. We propose an algorithm that constructs an allocation with value within a factor of $6 + delta$ from the optimum for any constant $delta > 0$. The running time is polynomial in the input size for any constant $delta$ chosen.
In the ${-1,0,1}$-APSP problem the goal is to compute all-pairs shortest paths (APSP) on a directed graph whose edge weights are all from ${-1,0,1}$. In the (min,max)-product problem the input is two $ntimes n$ matrices $A$ and $B$, and the goal is t o output the (min,max)-product of $A$ and $B$. This paper provides a new algorithm for the ${-1,0,1}$-APSP problem via a simple reduction to the target-(min,max)-product problem where the input is three $ntimes n$ matrices $A,B$, and $T$, and the goal is to output a Boolean $ntimes n$ matrix $C$ such that the $(i,j)$ entry of $C$ is 1 if and only if the $(i,j)$ entry of the (min,max)-product of $A$ and $B$ is exactly the $(i,j)$ entry of the target matrix $T$. If (min,max)-product can be solved in $T_{MM}(n) = Omega(n^2)$ time then it is straightforward to solve target-(min,max)-product in $O(T_{MM}(n))$ time. Thus, given the recent result of Bringmann, Kunnemann, and Wegrzycki [STOC 2019], the ${-1,0,1}$-APSP problem can be solved in the same time needed for solving approximate APSP on graphs with positive weights. Moreover, we design a simple algorithm for target-(min,max)-product when the inputs are restricted to the family of inputs generated by our reduction. Using fast rectangular matrix multiplication, the new algorithm is faster than the current best known algorithm for (min,max)-product.
Asadpour, Feige, and Saberi proved that the integrality gap of the configuration LP for the restricted max-min allocation problem is at most $4$. However, their proof does not give a polynomial-time approximation algorithm. A lot of efforts have been devoted to designing an efficient algorithm whose approximation ratio can match this upper bound for the integrality gap. In ICALP 2018, we present a $(6 + delta)$-approximation algorithm where $delta$ can be any positive constant, and there is still a gap of roughly $2$. In this paper, we narrow the gap significantly by proposing a $(4+delta)$-approximation algorithm where $delta$ can be any positive constant. The approximation ratio is with respect to the optimal value of the configuration LP, and the running time is $mathit{poly}(m,n)cdot n^{mathit{poly}(frac{1}{delta})}$ where $n$ is the number of players and $m$ is the number of resources. We also improve the upper bound for the integrality gap of the configuration LP to $3 + frac{21}{26} approx 3.808$.
We consider high dimensional variants of the maximum flow and minimum cut problems in the setting of simplicial complexes and provide both algorithmic and hardness results. By viewing flows and cuts topologically in terms of the simplicial (co)bounda ry operator we can state these problems as linear programs and show that they are dual to one another. Unlike graphs, complexes with integral capacity constraints may have fractional max-flows. We show that computing a maximum integral flow is NP-hard. Moreover, we give a combinatorial definition of a simplicial cut that seems more natural in the context of optimization problems and show that computing such a cut is NP-hard. However, we provide conditions on the simplicial complex for when the cut found by the linear program is a combinatorial cut. For $d$-dimensional simplicial complexes embedded into $mathbb{R}^{d+1}$ we provide algorithms operating on the dual graph: computing a maximum flow is dual to computing a shortest path and computing a minimum cut is dual to computing a minimum cost circulation. Finally, we investigate the Ford-Fulkerson algorithm on simplicial complexes, prove its correctness, and provide a heuristic which guarantees it to halt.
We recently introduced the graph invariant twin-width, and showed that first-order model checking can be solved in time $f(d,k)n$ for $n$-vertex graphs given with a witness that the twin-width is at most $d$, called $d$-contraction sequence or $d$-se quence, and formulas of size $k$ [Bonnet et al., FOCS 20]. The inevitable price to pay for such a general result is that $f$ is a tower of exponentials of height roughly $k$. In this paper, we show that algorithms based on twin-width need not be impractical. We present $2^{O(k)}n$-time algorithms for $k$-Independent Set, $r$-Scattered Set, $k$-Clique, and $k$-Dominating Set when an $O(1)$-sequence is provided. We further show how to solve weighted $k$-Independent Set, Subgraph Isomorphism, and Induced Subgraph Isomorphism, in time $2^{O(k log k)}n$. These algorithms are based on a dynamic programming scheme following the sequence of contractions forward. We then show a second algorithmic use of the contraction sequence, by starting at its end and rewinding it. As an example, we establish that bounded twin-width classes are $chi$-bounded. This significantly extends the $chi$-boundedness of bounded rank-width classes, and does so with a very concise proof. The third algorithmic use of twin-width builds on the second one. Playing the contraction sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed vertex ordering. Given that biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and hence All-Pairs Shortest Paths in sublinear time $O(n log n)$ and time $O(n^2 log n)$, respectively. Finally we show that Min Dominating Set and related problems have constant integrality gaps on bounded twin-width classes, thereby getting constant approximations on these classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا