ﻻ يوجد ملخص باللغة العربية
We describe the dynamics of a qubit interacting with a bosonic mode coupled to a zero-temperature bath in the deep strong coupling (DSC) regime. We provide an analytical solution for this open system dynamics in the off-resonance case of the qubit-mode interaction. Collapses and revivals of parity chain populations and the oscillatory behavior of the mean photon number are predicted. At the same time, photon number wave packets, propagating back and forth along parity chains, become incoherently mixed. Finally, we investigate numerically the effect of detuning on the validity of the analytical solution.
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like supercond
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi
We study the time and space resolved dynamics of a qubit with an Ohmic coupling to propagating 1D photons, from weak coupling to the ultrastrong coupling regime. A nonperturbative study based on Matrix Product States (MPS) shows the following results
Strong light-matter coupling is a necessary condition for exchanging information in quantum information protocols. It is used to couple different qubits (matter) via a quantum bus (photons) or to communicate different type of excitations, e.g. transd
The ability to control and measure the temperature of propagating microwave modes down to very low temperatures is indispensable for quantum information processing, and may open opportunities for studies of heat transport at the nanoscale, also in th