ترغب بنشر مسار تعليمي؟ اضغط هنا

Consolidating the concept of low-energy magnetic dipole decay radiation

45   0   0.0 ( 0 )
 نشر من قبل J{\\o}rgen Eriksson Midtb{\\o}
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have made a thorough study of the low-energy behaviour of the $gamma$-ray strength function within the framework of the shell model. We have performed large-scale calculations spanning isotopic and isotonic chains over several mass regions, with the purpose of studying the systematic behavior of the low-energy enhancement (LEE) for $M1$ transitions. There are clear trends in the calculations: From being all but absent in the lowest mass region, the LEE becomes steeper and more pronounced as the mass number increases, and for a given mass region it further increases towards shell closures. Moreover, the LEE is found to be steeper in regions near doubly-magic nuclei where proton particles couple to neutron holes. These trends enable us to consolidate several previous works on the LEE into a single, consistent concept. We compare the inferred trends to the available experimental data from the Oslo method, and find suppport for the systematic behaviour. Lastly we have compared the calculations to strength functions compiled from discrete, experimental lifetimes, and find excellent agreement; the discrete data are consistent with a LEE, and indicate that the slope varies as function of mass number.

قيم البحث

اقرأ أيضاً

A pronounced spike at low energy in the strength function for magnetic radiation (LEMAR) is found by means of Shell Model calculations, which explains the experimentally observed enhancement of the dipole strength. LEMAR originates from statistical l ow-energy M1-transitions between many excited complex states. Re-coupling of the proton and neutron high-j orbitals generates the strong magnetic radiation. LEMAR is predicted for nuclides with $Aapprox 132$ participating in the r-process of element synthesis. It increases the reaction rates by a factor of 2.5. The spectral function of LEMAR follows Plancks Law. A power law for the size distribution of the $B(M1)$ values are found.
Studies of the $gamma$-ray strength functions can reveal useful information concerning underlying nuclear structure. Accumulated experimental data on the strength functions show an enhancement in the low $gamma$ energy region. We have calculated the M1 strength functions for the $^{49,50}$Cr and $^{48}$V nuclei in the $f_{7/2}$ shell-model basis. We find a low-energy enhancement for gamma decay similar to that obtained for other nuclei in previous studies, but for the first time we are also able to study the complete distribution related to M1 emission and absorption. We find that M1 strength distribution peaks at zero transition energy and falls off exponentially. The height of the peak and the slope of the exponential are approximately independent of the nuclei studied in this model space and the range of initial angular momenta. We show that the slope of the exponential fall off is proportional to the energy of the $T=1$ pairing gap.
A low-energy magnetic dipole $(M1)$ spin-scissors resonance (SSR) located just below the ordinary orbital scissors resonance (OSR) was recently predicted in deformed nuclei within the Wigner Function Moments (WFM) approach. We analyze this prediction using fully self-consistent Skyrme Quasiparticle Random Phase Approximation (QRPA) method. Skyrme forces SkM*, SVbas and SG2 are implemented to explore SSR and OSR in $^{160,162,164}$Dy and $^{232}$Th. Accuracy of the method is justified by a good description of M1 spin-flip giant resonance. The calculations show that isotopes $^{160,162,164}$Dy indeed have at 1.5-2.4 MeV (below OSR) $I^{pi}K=1^+1$ states with a large $M1$ spin strength ($K$ is the projection of the total nuclear moment to the symmetry z-axis). These states are almost fully exhausted by $pp[411uparrow, 411downarrow]$ and $nn[521uparrow, 521downarrow]$ spin-flip configurations corresponding to $pp[2d_{3/2}, 2d_{5/2}]$ and $nn[2f_{5/2}, 2f_{7/2}]$ structures in the spherical limit. So the predicted SSR is actually reduced to low-orbital (l=2,3) spin-flip states. Following our analysis and in contradiction with WFM spin-scissors picture, deformation is not the principle origin of the low-energy spin $M1$ states but only a factor affecting their features. The spin and orbital strengths are generally mixed and exhibit the interference: weak destructive in SSR range and strong constructive in OSR range. In $^{232}$Th, the $M1$ spin strength is found very small. Two groups of $I^{pi}=1^+$ states observed experimentally at 2.4-4 MeV in $^{160,162,164}$Dy and at 2-4 MeV in $^{232}$Th are mainly explained by fragmentation of the orbital strength. Distributions of nuclear currents in QRPA states partly correspond to the isovector orbital-scissors flow but not to spin-scissors one.
254 - G. Kruzic , T. Oishi , D. Vale 2020
Magnetic dipole (M1) excitations build not only a fundamental mode of nucleonic transitions, but they are also relevant for nuclear astrophysics applications. We have established a theory framework for description of M1 transitions based on the relat ivistic nuclear energy density functional. For this purpose the relativistic quasiparticle random phase approximation (RQRPA) is established using density dependent point coupling interaction DD-PC1, supplemented with the isovector-pseudovector interaction channel in order to study unnatural parity transitions. The introduced framework has been validated using the M1 sum rule for core-plus-two-nucleon systems, and employed in studies of the spin, orbital, isoscalar and isovector M1 transition strengths, that relate to the electromagnetic probe, in magic nuclei $^{48}$Ca and $^{208}$Pb, and open shell nuclei $^{42}$Ca and $^{50}$Ti. In these systems, the isovector spin-flip M1 transition is dominant, mainly between one or two spin-orbit partner states. It is shown that pairing correlations have a significant impact on the centroid energy and major peak position of the M1 mode. The M1 excitations could provide an additional constraint to improve nuclear energy density functionals in the future studies.
The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma) experiment a nd peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma) reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا