ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic analysis of low-energy spin and orbital magnetic dipole excitations in deformed nuclei

62   0   0.0 ( 0 )
 نشر من قبل V. O. Nesterenko
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A low-energy magnetic dipole $(M1)$ spin-scissors resonance (SSR) located just below the ordinary orbital scissors resonance (OSR) was recently predicted in deformed nuclei within the Wigner Function Moments (WFM) approach. We analyze this prediction using fully self-consistent Skyrme Quasiparticle Random Phase Approximation (QRPA) method. Skyrme forces SkM*, SVbas and SG2 are implemented to explore SSR and OSR in $^{160,162,164}$Dy and $^{232}$Th. Accuracy of the method is justified by a good description of M1 spin-flip giant resonance. The calculations show that isotopes $^{160,162,164}$Dy indeed have at 1.5-2.4 MeV (below OSR) $I^{pi}K=1^+1$ states with a large $M1$ spin strength ($K$ is the projection of the total nuclear moment to the symmetry z-axis). These states are almost fully exhausted by $pp[411uparrow, 411downarrow]$ and $nn[521uparrow, 521downarrow]$ spin-flip configurations corresponding to $pp[2d_{3/2}, 2d_{5/2}]$ and $nn[2f_{5/2}, 2f_{7/2}]$ structures in the spherical limit. So the predicted SSR is actually reduced to low-orbital (l=2,3) spin-flip states. Following our analysis and in contradiction with WFM spin-scissors picture, deformation is not the principle origin of the low-energy spin $M1$ states but only a factor affecting their features. The spin and orbital strengths are generally mixed and exhibit the interference: weak destructive in SSR range and strong constructive in OSR range. In $^{232}$Th, the $M1$ spin strength is found very small. Two groups of $I^{pi}=1^+$ states observed experimentally at 2.4-4 MeV in $^{160,162,164}$Dy and at 2-4 MeV in $^{232}$Th are mainly explained by fragmentation of the orbital strength. Distributions of nuclear currents in QRPA states partly correspond to the isovector orbital-scissors flow but not to spin-scissors one.

قيم البحث

اقرأ أيضاً

114 - Kenichi Yoshida 2020
Background: The electric giant-dipole resonance (GDR) is the most established collective vibrational mode of excitation. A charge-exchange analog, however, has been poorly studied in comparison with the spin (magnetic) dipole resonance (SDR). Purpose : I investigate the role of deformation on the charge-exchange dipole excitations and explore the generic features as an isovector mode of excitation. Methods: The nuclear energy-density functional method is employed for calculating the response functions based on the Skyrme--Kohn--Sham--Bogoliubov method and the proton-neuton quasiparticle-random-phase approximation. Results: The deformation splitting into $K=0$ and $K=pm 1$ components occurs in the charge-changing channels and is proportional to the magnitude of deformation as is well known for the GDR. For the SDR, however, a simple assertion based on geometry of a nucleus cannot be applied for explaining the vibrational frequencies of each $K$-component. A qualitative argument on the strength distributions for each component is given based on the non-energy-weighted sum rules taking nuclear deformation into account. The concentration of the electric dipole strengths in low energy and below the giant resonance is found in neutron-rich unstable nuclei. Conclusions: The deformation splitting occurs generically for the charge-exchange dipole excitions as in the neutral channel. The analog pygmy dipole resonance can emerge in deformed neutron-rich nuclei as well as in spherical systems.
The nucleus is one of the most multi-faceted many-body systems in the universe. It exhibits a multitude of responses depending on the way one probes it. With increasing technical advancements of beams at the various accelerators and of detection syst ems the nucleus has, over and over again, surprised us by expressing always new ways of organized structures and layers of complexity. Nuclear magnetism is one of those fascinating faces of the atomic nucleus we discuss in the present review. We shall not just limit ourselves to presenting the by now very large data set that has been obtained in the last two decades using various probes, electromagnetic and hadronic alike and that presents ample evidence for a low-lying orbital scissors mode around 3 MeV, albeit fragmented over an energy interval of the order of 1.5 MeV, and higher-lying spin-flip strength in the energy region 5 - 9 MeV in deformed nuclei, nor to the presently discovered evidence for low-lying proton-neutron isovector quadrupole excitations in spherical nuclei. To the contrary, we put the experimental evidence in the perspectives of understanding the atomic nucleus and its various structures of well-organized modes of motion and thus enlarge our discussion to more general fermion and bosonic many-body systems.
116 - Bastian Erler , Robert Roth 2014
Background: Collective excitations of nuclei and their theoretical descriptions provide an insight into the structure of nuclei. Replacing traditional phenomenological interactions with unitarily transformed realistic nucleon-nucleon interactions inc reases the predictive power of the theoretical calculations for exotic or deformed nuclei. Purpose: Extend the application of realistic interactions to deformed nuclei and compare the performance of different interactions, including phenomenological interactions, for collective excitations in the sd-shell. Method: Ground-state energies and charge radii of 20-Ne, 28-Si and 32-S are calculated with the Hartree-Fock method. Transition strengths and transition densities are obtained in the Random Phase Approximation with explicit angular-momentum projection. Results: Strength distributions for monopole, dipole and quadrupole excitations are analyzed and compared to experimental data. Transition densities give insight into the structure of collective excitations in deformed nuclei. Conclusions: Unitarily transformed realistic interactions are able to describe the collective response in deformed sd-shell nuclei in good agreement with experimental data and as good or better than purely phenomenological interactions. Explicit angular momentum projection can have a significant impact on the response.
254 - G. Kruzic , T. Oishi , D. Vale 2020
Magnetic dipole (M1) excitations build not only a fundamental mode of nucleonic transitions, but they are also relevant for nuclear astrophysics applications. We have established a theory framework for description of M1 transitions based on the relat ivistic nuclear energy density functional. For this purpose the relativistic quasiparticle random phase approximation (RQRPA) is established using density dependent point coupling interaction DD-PC1, supplemented with the isovector-pseudovector interaction channel in order to study unnatural parity transitions. The introduced framework has been validated using the M1 sum rule for core-plus-two-nucleon systems, and employed in studies of the spin, orbital, isoscalar and isovector M1 transition strengths, that relate to the electromagnetic probe, in magic nuclei $^{48}$Ca and $^{208}$Pb, and open shell nuclei $^{42}$Ca and $^{50}$Ti. In these systems, the isovector spin-flip M1 transition is dominant, mainly between one or two spin-orbit partner states. It is shown that pairing correlations have a significant impact on the centroid energy and major peak position of the M1 mode. The M1 excitations could provide an additional constraint to improve nuclear energy density functionals in the future studies.
We report on the results of the calculations of the low energy excitation patterns for three Zirconium isotopes, viz. $^{80}$Zr$_{40}$, $^{96}$Zr$_{56}$ and $^{110}$Zr$_{70}$, reported by other authors to be doubly-magic tetrahedral nuclei (with tetr ahedral magic numbers $Z$=40 and $N$=40, 56 and 70). We employ the realistic Gogny effective interactions using three variants of their parametrisation and the particle-number, parity and the angular-momentum projection techniques. We confirm quantitatively that the resulting spectra directly follow the pattern expected from the group theory considerations for the tetrahedral symmetric quantum objects. We also find out that, for all the nuclei studied, the correlation energy obtained after the angular momentum projection is very large for the tetrahedral deformation as well as other octupole deformations. The lowering of the energies of the resulting configurations is considerable, i.e. by about 10 MeV or even more, once again confirming the significance of the angular-momentum projections techniques in the mean-field nuclear structure calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا