ﻻ يوجد ملخص باللغة العربية
Stencil computations are a key part of many high-performance computing applications, such as image processing, convolutional neural networks, and finite-difference solvers for partial differential equations. Devito is a framework capable of generating highly-optimized code given symbolic equations expressed in Python, specialized in, but not limited to, affine (stencil) codes. The lowering process---from mathematical equations down to C++ code---is performed by the Devito compiler through a series of intermediate representations. Several performance optimizations are introduced, including advanced common sub-expressions elimination, tiling and parallelization. Some of these are obtained through well-established stencil optimizers, integrated in the back-end of the Devito compiler. The architecture of the Devito compiler, as well as the performance optimizations that are applied when generating code, are presented. The effectiveness of such performance optimizations is demonstrated using operators drawn from seismic imaging applications.
Domain specific languages (DSL) have been used in a variety of fields to express complex scientific problems in a concise manner and provide automated performance optimization for a range of computational architectures. As such DSLs provide a powerfu
Stencil computation is one of the most important kernels in various scientific and engineering applications. A variety of work has focused on vectorization and tiling techniques, aiming at exploiting the in-core data parallelism and data locality res
A debate in the research community has buzzed in the background for years: should large-scale Internet services be centralized or decentralized? Now-common centralized cloud and web services have downsides -- user lock-in and loss of privacy and data
We evaluate the performance of Devito, a domain specific language (DSL) for finite differences on Arm ThunderX2 processors. Experiments with two common seismic computational kernels demonstrate that Arm processors can deliver competitive performance compared to other Intel Xeon processors.
Exascale computing will feature novel and potentially disruptive hardware architectures. Exploiting these to their full potential is non-trivial. Numerical modelling frameworks involving finite difference methods are currently limited by the static n