ﻻ يوجد ملخص باللغة العربية
Symmetry, dimensionality, and interaction are crucial ingredients for phase transitions and quantum states of matter. As a prominent example, the integer quantum Hall effect (QHE) represents a topological phase generally regarded as characteristic for two-dimensional (2D) electronic systems, and its many aspects can be understood without invoking electron-electron interaction. The intriguing possibility of generalizing QHE to three-dimensional (3D) systems was proposed decades ago, yet it remains elusive experimentally. Here, we report clear experimental evidence for the 3D QHE observed in bulk ZrTe5 crystals. Owing to the extremely high sample quality, the extreme quantum limit with only the lowest Landau level occupied can be achieved by an applied magnetic field as low as 1.5 T. Remarkably, in this regime, we observe a dissipationless longitudinal resistivity rho_xx=0 accompanied with a well-developed Hall resistivity plateau rho_xy=(1pm0.1) h/e^2 (lambda_(F,z)/2), where lambda_(F,z) is the Fermi wavelength along the field direction (z axis). This striking result strongly suggests a Fermi surface instability driven by the enhanced interaction effects in the extreme quantum limit. In addition, with further increasing magnetic field, both rho_xx and rho_xy increase dramatically and display an interesting metal-insulator transition, representing another magnetic field driven quantum phase transition. Our findings not only unambiguously reveal a novel quantum state of matter resulting from an intricate interplay among dimensionality, interaction, and symmetry breaking, but also provide a promising platform for further exploration of more exotic quantum phases and transitions in 3D systems.
By using first-principles calculation, we have found that a family of 2D transition metal dichalcogenide haeckelites with square-octagonal lattice $MX_2$-4-8 ($M$=Mo, W and $X$=S, Se and Te) can host quantum spin hall effect. The phonon spectra indic
Based on first-principles calculations, we have found a family of two-dimensional (2D) transition-metal chalcogenides MX$_5$ (M = Zr, Hf and X = S, Se and Te) can host quantum spin Hall (QSH) effect. The molecular dynamics (MD) simulation indicate th
Researches on anomalous Hall effect (AHE) have been lasting for a century to make clear the underlying physical mechanism. Generally, the AHE appears in magnetic materials, in which extrinsic process related to scattering effects and intrinsic contri
This paper presents a theoretical description of both the valley Zeeman effect (g-factors) and Landau levels in two-dimensional H-phase transition metal dichalcogenides (TMDs) using the Luttinger-Kohn approximation with spin-orbit coupling. At the va
Lightly doped III-V semiconductor InAs is a dilute metal, which can be pushed beyond its extreme quantum limit upon the application of a modest magnetic field. In this regime, a Mott-Anderson metal-insulator transition, triggered by the magnetic fiel