ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Spin Hall Effect in 2D Transition Metal Dichalcogenide Haeckelites

158   0   0.0 ( 0 )
 نشر من قبل Hongming Weng
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using first-principles calculation, we have found that a family of 2D transition metal dichalcogenide haeckelites with square-octagonal lattice $MX_2$-4-8 ($M$=Mo, W and $X$=S, Se and Te) can host quantum spin hall effect. The phonon spectra indicate that they are dynamically stable and the largest band gap is predicted to be around 54 meV, higher than room temperature. These will pave the way to potential applications of topological insulators. We have also established a simple tight-binding model on a square-like lattice to achieve topological nontrivial quantum states, which extends the study from honeycomb lattice to square-like lattice and broads the potential topological material system greatly.

قيم البحث

اقرأ أيضاً

Symmetry, dimensionality, and interaction are crucial ingredients for phase transitions and quantum states of matter. As a prominent example, the integer quantum Hall effect (QHE) represents a topological phase generally regarded as characteristic fo r two-dimensional (2D) electronic systems, and its many aspects can be understood without invoking electron-electron interaction. The intriguing possibility of generalizing QHE to three-dimensional (3D) systems was proposed decades ago, yet it remains elusive experimentally. Here, we report clear experimental evidence for the 3D QHE observed in bulk ZrTe5 crystals. Owing to the extremely high sample quality, the extreme quantum limit with only the lowest Landau level occupied can be achieved by an applied magnetic field as low as 1.5 T. Remarkably, in this regime, we observe a dissipationless longitudinal resistivity rho_xx=0 accompanied with a well-developed Hall resistivity plateau rho_xy=(1pm0.1) h/e^2 (lambda_(F,z)/2), where lambda_(F,z) is the Fermi wavelength along the field direction (z axis). This striking result strongly suggests a Fermi surface instability driven by the enhanced interaction effects in the extreme quantum limit. In addition, with further increasing magnetic field, both rho_xx and rho_xy increase dramatically and display an interesting metal-insulator transition, representing another magnetic field driven quantum phase transition. Our findings not only unambiguously reveal a novel quantum state of matter resulting from an intricate interplay among dimensionality, interaction, and symmetry breaking, but also provide a promising platform for further exploration of more exotic quantum phases and transitions in 3D systems.
Transition-metal dichalcogenides (TMDCs) are important class of two-dimensional (2D) layered materials for electronic and optoelectronic applications, due to their ultimate body thickness, sizable and tunable bandgap, and decent theoretical room-temp erature mobility of hundreds to thousands cm2/Vs. So far, however, all TMDCs show much lower mobility experimentally because of the collective effects by foreign impurities, which has become one of the most important limitations for their device applications. Here, taking MoS2 as an example, we review the key factors that bring down the mobility in TMDC transistors, including phonons, charged impurities, defects, and charge traps. We introduce a theoretical model that quantitatively captures the scaling of mobility with temperature, carrier density and thickness. By fitting the available mobility data from literature over the past few years, we are able to obtain the density of impurities and traps for a wide range of transistor structures. We show that interface engineering such as oxide surface passivation, high-k dielectrics and BN encapsulation could effectively reduce the impurities, leading to improved device performances. For few-layer TMDCs, we analytically model the lopsided carrier distribution to elucidate the experimental increase of mobility with the number of layers. From our analysis, it is clear that the charge transport in TMDC samples is a very complex problem that must be handled carefully. We hope that this Review can provide new insights and serve as a starting point for further improving the performance of TMDC transistors.
Based on first-principles calculations, we have found a family of two-dimensional (2D) transition-metal chalcogenides MX$_5$ (M = Zr, Hf and X = S, Se and Te) can host quantum spin Hall (QSH) effect. The molecular dynamics (MD) simulation indicate th at they are all thermal-dynamically stable at room temperature, the largest band gap is 0.19 eV. We have investigated the electronic and topological properties and they have very similar properties. For the single-layer ZrX$_5$, they are all gapless semimetals without consideration of spin-orbit coupling (SOC). The consideration of SOC will result in insulating phases with band gaps of 49.5 meV (direct), 0.18 eV (direct) and 0.13 eV (indirect) for ZrS$_5$, ZrSe$_5$ to ZrTe$_5$, respectively. The evolution of Wannier charge centers (WCC) and edge states confirm they are all QSH insulators. The mechanisms for QSH effect in ZrX$_5$ originate from the special nonsymmorphic space group features. In addition, the QSH state of ZrS$_5$ survives at a large range of strain as long as the interchain coupling is not strong enough to reverse the band ordering. The single-layer ZrS$_5$ will occur a TI-to-semimetal (metal) or metal-to-semimetal transition under certain strain. The realization of pure MX$_5$ monolayer should be readily obtained via mechanical exfoliation methods, thus holding great promise for nanoscale device applications and stimulating further efforts on transition metal (TM) based QSH materials.
87 - Yusong Bai , Lin Zhou , Jue Wang 2019
The formation of interfacial moire patterns from angular and/or lattice mismatch has become a powerful approach to engineer a range of quantum phenomena in van der Waals heterostructures. For long-lived and valley-polarized interlayer excitons in tra nsition-metal dichalcogenide (TMDC) heterobilayers, signatures of quantum confinement by the moire landscape have been reported in recent experimental studies. Such moire confinement has offered the exciting possibility to tailor new excitonic systems, such as ordered arrays of zero-dimensional (0D) quantum emitters and their coupling into topological superlattices. A remarkable nature of the moire potential is its dramatic response to strain, where a small uniaxial strain can tune the array of quantum-dot-like 0D traps into parallel stripes of one-dimensional (1D) quantum wires. Here, we present direct evidence for the 1D moire potentials from real space imaging and the corresponding 1D moire excitons from photoluminescence (PL) emission in MoSe2/WSe2 heterobilayers. Whereas the 0D moire excitons display quantum emitter-like sharp PL peaks with circular polarization, the PL emission from 1D moire excitons has linear polarization and two orders of magnitude higher intensity. The results presented here establish strain engineering as a powerful new method to tailor moire potentials as well as their optical and electronic responses on demand.
Strain in two-dimensional (2D) transition metal dichalcogenide (TMD) has led to localized states with exciting optical properties, in particular in view of designing one photon sources. The naturally formed of the MoS2 monolayer deposed on hBN substr ate leads to a reduction of the bandgap in the strained region creating a nanobubble. The photogenerated particles are thus confined in the strain-induced potential. Using numerical diagonalization, we simulate the spectra of the confined exciton states, their oscillator strengths and radiative lifetimes. We show that a single state of the confined exciton is optically active, which suggests that the MoS2/hBN nanobubble is a good candidate for the realisation of single-photon sources. Furthermore, the exciton binding energy, oscillator strength and radiative lifetime are enhanced due to the confinement effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا