ﻻ يوجد ملخص باللغة العربية
Copying mechanism shows effectiveness in sequence-to-sequence based neural network models for text generation tasks, such as abstractive sentence summarization and question generation. However, existing works on modeling copying or pointing mechanism only considers single word copying from the source sentences. In this paper, we propose a novel copying framework, named Sequential Copying Networks (SeqCopyNet), which not only learns to copy single words, but also copies sequences from the input sentence. It leverages the pointer networks to explicitly select a sub-span from the source side to target side, and integrates this sequential copying mechanism to the generation process in the encoder-decoder paradigm. Experiments on abstractive sentence summarization and question generation tasks show that the proposed SeqCopyNet can copy meaningful spans and outperforms the baseline models.
Morphological declension, which aims to inflect nouns to indicate number, case and gender, is an important task in natural language processing (NLP). This research proposal seeks to address the degree to which Recurrent Neural Networks (RNNs) are eff
Many natural language generation tasks, such as abstractive summarization and text simplification, are paraphrase-orientated. In these tasks, copying and rewriting are two main writing modes. Most previous sequence-to-sequence (Seq2Seq) models use a
Copy mechanisms are employed in sequence to sequence models (seq2seq) to generate reproductions of words from the input to the output. These frameworks, operating at the lexical type level, fail to provide an explicit alignment that records where eac
Previous studies have shown that initializing neural machine translation (NMT) models with the pre-trained language models (LM) can speed up the model training and boost the model performance. In this work, we identify a critical side-effect of pre-t
Attention mechanism has been proven effective on natural language processing. This paper proposes an attention boosted natural language inference model named aESIM by adding word attention and adaptive direction-oriented attention mechanisms to the t