ﻻ يوجد ملخص باللغة العربية
Recent hydrodynamical simulations predict that stellar feedback in intermediate mass galaxies (IMGs) can drive strong fluctuations in structure (e.g., half-light radius, $R_e$). This process operates on timescales of only a few hundred Myr and persists even at late cosmic times. One prediction of this quasi-periodic, galactic-scale breathing is an $anti$-correlation between star formation rate (SFR) and half-light radius as central gas overdensities lead to starbursts whose feedback drags stars to larger radii while star formation dwindles. We test this prediction with a sample of 322 $isolated$ IMGs with stellar masses of $10^{9.0} leq M/M_{odot} leq 10^{9.5}$ at $0.3<z<0.4$ in the HST $I_{814}$ COSMOS footprint. We find that IMGs with higher specific SFRs (SSFR $>10^{-10}$ yr$^{-1}$) are the most extended with median sizes of $R_e sim 3-3.4$ kpc and are mostly disk-dominated systems. In contrast, IMGs with lower SSFRs ($<10^{-10}$ yr$^{-1}$) are a factor of $sim 2-3$ more compact with median sizes of $R_e sim 0.9-1.6$ kpc and have more significant bulge contributions to their light. These observed trends are opposite the predictions for stellar feedback that operate via the breathing process described above. We discuss various paths to reconcile the observations and simulations, all of which likely require a different implementation of stellar feedback in IMGs that drastically changes their predicted formation history.
Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anti-correlation between the index N2 (log([NII]6583/Halpha)) and the Halpha flux. These two quantities are commonly em
We explore the radial variation of star formation histories in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 9 low-mass field dwarfs with M_ star = 10^5 - 10^7 M_sun from previous FIRE results, a
The fundamental metallicity relation (FMR) states that galaxies of the same stellar mass but larger star formation rate (SFR) tend to have smaller gas-phase metallicity (<Zg>). It is thought to be fundamental because it naturally arises from the stoc
Stellar feedback in dwarf galaxies plays a critical role in regulating star formation via galaxy-scale winds. Recent hydrodynamical zoom simulations of dwarf galaxies predict that the periodic outward flow of gas can change the gravitational potentia
To investigate the mass dependence of structural transformation and star formation quenching, we construct three galaxy samples using massive ($M_* > 10^{10} M_{odot}$) red, green, and blue galaxy populations at $0.5<z<2.5$ in five 3D--{it HST}/CANDE