ﻻ يوجد ملخص باللغة العربية
To investigate the mass dependence of structural transformation and star formation quenching, we construct three galaxy samples using massive ($M_* > 10^{10} M_{odot}$) red, green, and blue galaxy populations at $0.5<z<2.5$ in five 3D--{it HST}/CANDELS fields. The structural parameters, including effective radius ($r_{rm e}$), galaxy compactness ($Sigma_{1.5}$), and second order moment of 20% brightest pixels ($M_{20}$) are found to be correlated with stellar mass. S{e}rsic index ($n$), concentration ($C$), and Gini coefficient ($G$) seem to be insensitive to stellar mass. The morphological distinction between blue and red galaxies is found at a fixed mass bin, suggesting that quenching processes should be accompanied with transformations of galaxy structure and morphology. Except for $r_e$ and $Sigma_{1.5}$ at high mass end, structural parameters of green galaxies are intermediate between red and blue galaxies in each stellar mass bin at $z < 2$, indicating green galaxies are at a transitional phase when blue galaxies are being quenched into quiescent statuses. The similar sizes and compactness for the blue and green galaxies at high-mass end implies that these galaxies will not appear to be significantly shrunk until they are completely quenched into red QGs. For the green galaxies at $0.5<z<1.5$, a morphological transformation sequence of bulge buildup can be seen as they are gradually shut down their star formation activities, while a faster morphological transformation is verified for the green galaxies at $1.5<z<2.5$.
In this paper, we investigate the relationship between star formation and structure, using a mass-complete sample of 27,893 galaxies at $0.5<z<2.5$ selected from 3D-HST. We confirm that star-forming galaxies are larger than quiescent galaxies at fixe
We present a new measurement of the gas-phase mass-metallicity relation (MZR), and its dependence on star formation rates (SFRs) at 1.3 < z < 2.3. Our sample comprises 1056 galaxies with a mean redshift of z = 1.9, identified from the Hubble Space Te
We analyze the dependence of galaxy structure (size and Sersic index) and mode of star formation (Sigma_SFR and SFR_IR/SFR_UV) on the position of galaxies in the SFR versus Mass diagram. Our sample comprises roughly 640000 galaxies at z~0.1, 130000 g
We study the star formation rate (SFR) - stellar mass (M*) relation in a self-consistent manner from 0 < z < 2.5 with a sample of galaxies selected from the NEWFIRM Medium-Band Survey. We find a significant non-linear slope of the relation, SFR propt
We present results on the clustering properties of galaxies as a function of both stellar mass and specific star formation rate (sSFR) using data from the PRIMUS and DEEP2 galaxy redshift surveys spanning 0.2 < z < 1.2. We use spectroscopic redshifts