ﻻ يوجد ملخص باللغة العربية
Let $X$ be a simplicial complex with $n$ vertices. A missing face of $X$ is a simplex $sigma otin X$ such that $tauin X$ for any $tausubsetneq sigma$. For a $k$-dimensional simplex $sigma$ in $X$, its degree in $X$ is the number of $(k+1)$-dimensional simplices in $X$ containing it. Let $delta_k$ denote the minimal degree of a $k$-dimensional simplex in $X$. Let $L_k$ denote the $k$-Laplacian acting on real $k$-cochains of $X$ and let $mu_k(X)$ denote its minimal eigenvalue. We prove the following lower bound on the spectral gaps $mu_k(X)$, for complexes $X$ without missing faces of dimension larger than $d$: [ mu_k(X)geq (d+1)(delta_k+k+1)-d n. ] As a consequence we obtain a new proof of a vanishing result for the homology of simplicial complexes without large missing faces. We present a family of examples achieving equality at all dimensions, showing that the bound is tight. For $d=1$ we characterize the equality case.
Let $X$ be a simplicial complex on $n$ vertices without missing faces of dimension larger than $d$. Let $L_{j}$ denote the $j$-Laplacian acting on real $j$-cochains of $X$ and let $mu_{j}(X)$ denote its minimal eigenvalue. We study the connection bet
Results of Koebe (1936), Schramm (1992), and Springborn (2005) yield realizations of $3$-polytopes with edges tangent to the unit sphere. Here we study the algebraic degrees of such realizations. This initiates the research on constrained realization spaces of polytopes.
Given a countable set S of positive reals, we study finite-dimensional Ramsey-theoretic properties of the countable ultrametric Urysohn space with distances in S.
The notion of cyclic sieving phenomenon is introduced by Reiner, Stanton, and White as a generalization of Stembridges $q=-1$ phenomenon. The generalized cluster complexes associated to root systems are given by Fomin and Reading as a generalization
We consider the problem of how to compute eigenvalues of a self-adjoint operator when a direct application of the Galerkin (finite-section) method is unreliable. The last two decades have seen the development of the so-called quadratic methods for ad