ترغب بنشر مسار تعليمي؟ اضغط هنا

Human-level performance in first-person multiplayer games with population-based deep reinforcement learning

93   0   0.0 ( 0 )
 نشر من قبل Wojciech Czarnecki
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent progress in artificial intelligence through reinforcement learning (RL) has shown great success on increasingly complex single-agent environments and two-player turn-based games. However, the real-world contains multiple agents, each learning and acting independently to cooperate and compete with other agents, and environments reflecting this degree of complexity remain an open challenge. In this work, we demonstrate for the first time that an agent can achieve human-level in a popular 3D multiplayer first-person video game, Quake III Arena Capture the Flag, using only pixels and game points as input. These results were achieved by a novel two-tier optimisation process in which a population of independent RL agents are trained concurrently from thousands of parallel matches with agents playing in teams together and against each other on randomly generated environments. Each agent in the population learns its own internal reward signal to complement the sparse delayed reward from winning, and selects actions using a novel temporally hierarchical representation that enables the agent to reason at multiple timescales. During game-play, these agents display human-like behaviours such as navigating, following, and defending based on a rich learned representation that is shown to encode high-level game knowledge. In an extensive tournament-style evaluation the trained agents exceeded the win-rate of strong human players both as teammates and opponents, and proved far stronger than existing state-of-the-art agents. These results demonstrate a significant jump in the capabilities of artificial agents, bringing us closer to the goal of human-level intelligence.

قيم البحث

اقرأ أيضاً

This study proposes a framework for human-like autonomous car-following planning based on deep reinforcement learning (deep RL). Historical driving data are fed into a simulation environment where an RL agent learns from trial and error interactions based on a reward function that signals how much the agent deviates from the empirical data. Through these interactions, an optimal policy, or car-following model that maps in a human-like way from speed, relative speed between a lead and following vehicle, and inter-vehicle spacing to acceleration of a following vehicle is finally obtained. The model can be continuously updated when more data are fed in. Two thousand car-following periods extracted from the 2015 Shanghai Naturalistic Driving Study were used to train the model and compare its performance with that of traditional and recent data-driven car-following models. As shown by this study results, a deep deterministic policy gradient car-following model that uses disparity between simulated and observed speed as the reward function and considers a reaction delay of 1s, denoted as DDPGvRT, can reproduce human-like car-following behavior with higher accuracy than traditional and recent data-driven car-following models. Specifically, the DDPGvRT model has a spacing validation error of 18% and speed validation error of 5%, which are less than those of other models, including the intelligent driver model, models based on locally weighted regression, and conventional neural network-based models. Moreover, the DDPGvRT demonstrates good capability of generalization to various driving situations and can adapt to different drivers by continuously learning. This study demonstrates that reinforcement learning methodology can offer insight into driver behavior and can contribute to the development of human-like autonomous driving algorithms and traffic-flow models.
90 - Yunqiu Xu , Meng Fang , Ling Chen 2020
We study reinforcement learning (RL) for text-based games, which are interactive simulations in the context of natural language. While different methods have been developed to represent the environment information and language actions, existing RL ag ents are not empowered with any reasoning capabilities to deal with textual games. In this work, we aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure. We propose a stacked hierarchical attention mechanism to construct an explicit representation of the reasoning process by exploiting the structure of the knowledge graph. We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
Most deep reinforcement learning (RL) systems are not able to learn effectively from off-policy data, especially if they cannot explore online in the environment. These are critical shortcomings for applying RL to real-world problems where collecting data is expensive, and models must be tested offline before being deployed to interact with the environment -- e.g. systems that learn from human interaction. Thus, we develop a novel class of off-policy batch RL algorithms, which are able to effectively learn offline, without exploring, from a fixed batch of human interaction data. We leverage models pre-trained on data as a strong prior, and use KL-control to penalize divergence from this prior during RL training. We also use dropout-based uncertainty estimates to lower bound the target Q-values as a more efficient alternative to Double Q-Learning. The algorithms are tested on the problem of open-domain dialog generation -- a challenging reinforcement learning problem with a 20,000-dimensional action space. Using our Way Off-Policy algorithm, we can extract multiple different reward functions post-hoc from collected human interaction data, and learn effectively from all of these. We test the real-world generalization of these systems by deploying them live to converse with humans in an open-domain setting, and demonstrate that our algorithm achieves significant improvements over prior methods in off-policy batch RL.
We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, resulting into a new algorithm, cal led soft Q-learning, that expresses the optimal policy via a Boltzmann distribution. We use the recently proposed amortized Stein variational gradient descent to learn a stochastic sampling network that approximates samples from this distribution. The benefits of the proposed algorithm include improved exploration and compositionality that allows transferring skills between tasks, which we confirm in simulated experiments with swimming and walking robots. We also draw a connection to actor-critic methods, which can be viewed performing approximate inference on the corresponding energy-based model.
We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperfo rms vanilla DDPG in the DeepMind Control Suite benchmark. Moreover, we find the residual algorithm an effective approach to the distribution mismatch problem in model-based planning. Compared with the existing TD($k$) method, our residual-based method makes weaker assumptions about the model and yields a greater performance boost.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا