ﻻ يوجد ملخص باللغة العربية
We present a formation process of a filament in active region NOAA 12574 during the period from 2016 August 11 to 12. Combining the observations of GONG H$alpha$, Hida spectrum and SDO/AIA 304 A, the formation process of the filament is studied. It is found that cool material ($Tsim10^4$ K) is ejected by a series of jets originating from the western foot-point of the filament. Simultaneously, the magnetic flux emerged from the photosphere in the vicinity of the western foot-point of the filament. These observations suggest that cool material in the low atmosphere can be directly injected into the upper atmosphere and the jets are triggered by the magnetic reconnection between pre-existing magnetic fields and new emerging magnetic fields. Detailed study of a jet at 18:02 UT on August 11 with GST/BBSO TiO observations reveals that some dark threads appeared in the vicinity of the western foot-point after the jet and the projection velocity of plasma along the filament axis was about 162.6$pm$5.4 km/s. Using with DST/Hida observations, we find that the injected plasma by a jet at 00:42 UT on August 12 was rotating. Therefore, we conclude that the jets not only supplied the material for the filament, but also injected the helicity into the filament simultaneously. Comparing the quantity of mass injection by the jets with the mass of the filament, we conclude that the estimated mass loading by the jets is sufficient to account for the mass in the filament.
Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation m
We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from October 31 to November 2, 2013. In the initial stage, clockwise rotation of a small positive sunspot around the main n
Flux ropes are generally believed to be core structures of solar eruptions that are significant for the space weather, but their formation mechanism remains intensely debated. We report on the formation of a tiny flux rope beneath clusters of active
We study the formation of transient loops in the core of the AR 11890. For this purpose, we have used the observations recorded by the Atmospheric Imaging Assembly (AIA) and the Interface Region Imaging Spectrograph (IRIS). For photospheric field con