ﻻ يوجد ملخص باللغة العربية
Recent advances in selected CI, including the adaptive sampling configuration interaction (ASCI) algorithm and its heat bath extension, have made the ASCI approach competitive with the most accurate techniques available, and hence an increasingly powerful tool in solving quantum Hamiltonians. In this work, we show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques we present ASCI results applied to a large range of systems and basis sets in order to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-zeta benchmark data for the G1 dataset. The largest of these calculations is Si$_{2}$H$_{6}$ which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.
We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use
We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation t
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electro
The recently developed semistochastic heat-bath configuration interaction (SHCI) method is a systematically improvable selected configuration interaction plus perturbation theory method capable of giving essentially exact energies for larger systems
We derive expressions for the quantum electromagnetic field in a dispersive and dissipative dielectric medium, treating the medium as a continuum. We compare the Langevin approach with the Fano diagonalization procedure for the coupled system compose