ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength observations of V407 Lupi (ASASSN-16kt) --- a very fast nova erupting in an intermediate polar

82   0   0.0 ( 0 )
 نشر من قبل Elias Aydi Mr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the 2016 eruption of nova V407 Lupi (ASASSN-16kt), including optical, near-infrared, X-ray, and ultraviolet data from SALT, SMARTS, SOAR, Chandra, Swift, and XMM-Newton. Timing analysis of the multiwavelength light-curves shows that, from 168 days post-eruption and for the duration of the X-ray supersoft source phase, two periods at 565 s and 3.57 h are detected. We suggest that these are the rotational period of the white dwarf and the orbital period of the binary, respectively, and that the system is likely to be an intermediate polar. The optical light-curve decline was very fast ($t_2 leq$ 2.9 d), suggesting that the white dwarf is likely massive ($gtrsim 1.25$ M$_{odot}$). The optical spectra obtained during the X-ray supersoft source phase exhibit narrow, complex, and moving emission lines of He II, also characteristics of magnetic cataclysmic variables. The optical and X-ray data show evidence for accretion resumption while the X-ray supersoft source is still on, possibly extending its duration.



قيم البحث

اقرأ أيضاً

We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1-10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imag ing Telescope Array System during 2010 March 19-26 at relatively large zenith angles, due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 times 10^(-12) erg cm^(-2) s^(-1) (at the 95% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.
We present the result of a multi-longitude campaign on the photometric study of the dwarf nova ASASSN-18fk during its superoutburst in 2018. It was observed with 18 telescopes at 15 sites during ~70 nights within a three-month interval. Observations covered the main outburst, six rebrightenings and 50-d decline to a near-quiescent state. We identify ASASSN-18fk as WZ Sge-type dwarf nova with multiple rebrightenings and show the evolution of the 0.06-d superhump period over all stages of the superoutburst. A strong 22-min brightness modulation that superimposed on superhumps is found during rebrightenings and decline. Some evidence of this modulation in a form of a sideband signal is detected during the very onset of the outburst. We interpret the 22-min modulation as a spin period of the white dwarf and suggest that ASASSN-18fk is a good candidate for a superhumping intermediate polar.
The disc instability model (DIM) has been very successful in explaining the dwarf nova outbursts observed in cataclysmic variables. When, as in intermediate polars (IP), the accreting white dwarf is magnetized, the disc is truncated at the magnetosph eric radius, but for mass-transfer rates corresponding to the thermal-viscous instability such systems should still exhibit dwarf-nova outbursts. Yet, the majority of intermediate polars in which the magnetic field is not large enough to completely disrupt the accretion disc, seem to be stable, and the rare observed outbursts, in particular in systems with long orbital periods, are much shorter than normal dwarf-nova outbursts. We investigate the predictions of the disc instability model for intermediate polars in order to determine which of the observed properties of these systems can be explained by the DIM. We use our numerical code for the time evolution of accretion discs, modified to include the effects of the magnetic field, with constant or variable mass transfer from the secondary star. We show that intermediate polars have mass transfer low enough and magnetic fields large enough to keep the accretion disc stable on the cold equilibrium branch. We show that the infrequent and short outbursts observed in long period systems, such as e.g., TV Col, cannot be attributed to the thermal-viscous instability of the accretion disc, but instead have to be triggered by an enhanced mass-transfer from the secondary, or, more likely, by some instability coupling the white dwarf magnetic field with that generated by the magnetorotational instability operating in the accretion disc. Longer outbursts (a few days) could result from the disc instability.
110 - R. Hounsell 2011
Fast novae are primarily located within the plane of the Galaxy, slow novae are found within its bulge. Because of high interstellar extinction along the line of sight many novae lying close to the plane are missed and only the brightest seen. One no va lying very close to the Galactic plane is V1721 Aquilae, discovered in outburst on 2008 September 22. Spectra obtained 2.69 days after outburst revealed very high expansion velocities (FWHM ~6450 km/s). In this paper we have used available pre- and post-outburst photometry and post-outburst spectroscopy to conclude that the object is a very fast, luminous, and highly extinguished A_V=11.6+/-0.2) nova system with an average ejection velocity of ~3400 km/s. Pre-outburst near-IR colours from 2MASS indicate that at quiescence the object is similar to many quiescent CNe and appears to have a main sequence/sub-giant secondary rather than a giant. Based on the speed of decline of the nova and its emission line profiles we hypothesise that the axis ratio of the nova ejecta is ~1.4 and that its inclination is such that the central binary accretion disc is face-on to the observer. The accretion discs blue contribution to the systems near-IR quiescent colours may be significant. Simple models of the nova ejecta have been constructed using the morphological modelling code XS5, and the results support the above hypothesis. Spectral classification of this object has been difficult owing to low S/N levels and high extinction, which has eliminated all evidence of any He/N or FeII emission within the spectra. We suggest two possibilities for the nature of V1721 Aql: that it is a U Sco type RN with a sub-giant secondary or, less likely, that it is a highly energetic bright and fast classical nova with a main sequence secondary. Future monitoring of the object for possible RN episodes may be worthwhile, as would archival searches for previous outbursts.
We discuss ASASSN-13db, an EX Lupi-type (EXor) accretion event on the young stellar object (YSO) SDSS J051011.01$-$032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region ($d sim 420$ pc). We present follow-up photometric and spectroscopic observations of the source after the $Delta V sim-$5.4 magnitude outburst that began in September 2013 and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of $sim10^{-7}$ $rm{M}_odot$ yr$^{-1}$, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا