ﻻ يوجد ملخص باللغة العربية
We investigate how bounds of resonance counting functions for Schottky surfaces behave under transitions to covering surfaces of finite degree. We consider the classical resonance counting function asking for the number of resonances in large (and growing) disks centered at the origin of $mathbb{C}$, as well as the (fractal) resonance counting function asking for the number of resonances in boxes near the axis of the critical exponent. For the former counting function we provide a transfer-operator-based proof that bounding constants can be chosen such that the transformation behavior under transition to covers is as for the Weyl law in the case of surfaces of finite area. For the latter counting function we deduce a bound in terms of the covering degree and the minimal length of a periodic geodesic on the covering surface. This yields an improved fractal Weyl upper bound. In the setting of Schottky surfaces, these estimates refine previous results due to Guillop{e}--Zworski and Guillop{e}--Lin--Zworski. When applied to principal congruence covers, these results yield new estimates for the resonance counting functions in the level aspect, which have recently been investigated by Jakobson--Naud. The techniques used in this article are based on the thermodynamic formalism for $L$-functions (twisted Selberg zeta functions), and twisted transfer operators.
In this paper we describe a simple method that allows for a fast direct computation of the scattering matrix for a surface with hyperbolic cusps from the Neumann-to-Dirichlet map on the compact manifold with boundary obtained by removing the cusps. W
We study triple covers of K3 surfaces, following Mirandas theory of triple covers. We relate the geometry of the covering surfaces with the properties of both the branch locus and the Tschirnhausen vector bundle. In particular, we classify Galois tri
For certain spectral parameters we find explicit eigenfunctions of transfer operators for Schottky surfaces. Comparing the dimension of the eigenspace for the spectral parameter zero with the multiplicity of topological zeros of the Selberg zeta func
Let $Lambdasubset mathbb{R}^d$ be a domain consisting of several cylinders attached to a bounded center. One says that $Lambda$ admits a threshold resonance if there exists a non-trivial bounded function $u$ solving $-Delta u= u u$ in $Lambda$ and va
Using a unified approach employing a homogeneous Lippmann-Schwinger-type equation satisfied by resonance functions and basic facts on Riesz potentials, we discuss the absence of threshold resonances for Dirac and Schrodinger operators with sufficient