ترغب بنشر مسار تعليمي؟ اضغط هنا

Unbound Young Stellar Systems: Star Formation on the loose

70   0   0.0 ( 0 )
 نشر من قبل Dimitrios Gouliermis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[abridged] Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small associations of stars to enormous stellar complexes. Being associated with star-forming regions of various sizes, they trace the regions where stars form at various scales, from compact clusters to whole galactic disks. They have been, thus, the focus of several studies with special interest on their demographics, classification, and structural morphology. Their surveys demonstrate that the clear distinction of these systems into well-defined classes is not straightforward, due to their low densities, asymmetric shapes and variety in structural parameters. Unbound stellar structures follow a hierarchical clustering pattern up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.

قيم البحث

اقرأ أيضاً

216 - Eric Feigelson 2009
Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbl es, and soon exploding as supernovae. Thousands of lower-mass pre-main sequence stars accompany the massive stars, and the expanding HII regions paradoxically trigger new star formation as they destroy their natal clouds. While this schematic picture is established, our understanding of the complex astrophysical processes involved in clustered star formation have only just begun to be elucidated. The technologies are challenging, requiring both high spatial resolution and wide fields at wavelengths that penetrate obscuring molecular material and remove contaminating Galactic field stars. We outline several important projects for the coming decade: the IMFs and structures of YSCs; triggered star formation around YSC; the fate of OB winds; the stellar populations of Infrared Dark Clouds; the most massive star clusters in the Galaxy; tracing star formation throughout the Galactic Disk; the Galactic Center region and YSCs in the Magellanic Clouds. Programmatic recommendations include: developing a 30m-class adaptive optics infrared telescope; support for high-resolution and wide field X-ray telescopes; large-aperture sub-millimeter and far-infrared telescopes; multi-object infrared spectrographs; and both numerical and analytical theory.
In this work we have carried out an in-depth analysis of the young stellar content in the W3 GMC. The YSO population was identified and classified in the IRAC/MIPS color-magnitude space according to the `Class scheme and compared to other classificat ions based on intrinsic properties. Class 0/I and II candidates were also compared to low/intermediate-mass pre-main-sequence stars selected through their colors and magnitudes in 2MASS. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate mass objects can be more reliably identified. By means of the MST algorithm and our YSO spatial distribution and age maps we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high density layer also shows signs of extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming an spontaneous origin for the isolated massive star(s) powering KR 140.
Studies of the Galactic Centre suggest that in-situ star formation may have given rise to the observed stellar population near the central supermassive black hole (SMBH). Direct evidence for a recent starburst is provided by the currently observed yo ung stellar disc (2-7 Myr) in the central 0.5 pc of the Galaxy. This result suggests that star formation in galactic nuclei may occur close to the SMBH and produce initially flattened stellar discs. Here we explore the possible build-up and evolution of nuclear stellar clusters near SMBHs through in-situ star formation producing stellar discs similar to those observed in the Galactic Centre and other nuclei. We make use of N-body simulations to model the evolution of multiple young stellar discs and explore the potential observable signatures imprinted by such processes. Each of the five simulated discs is evolved for 100 Myr before the next one is introduced in the system. We find that populations born at different epochs show different morphologies and kinematics. Older and presumably more metal poor populations are more relaxed and extended, while younger populations show a larger amount of rotation and flattening. We conclude that star formation in central discs can reproduce the observed properties of multiple stellar populations in galactic nuclei differing in age, metallicity and kinematic properties.
Magnetic cycles have been detected in tens of solar-like stars. The relationship between the cycle properties and global stellar parameters is not fully understood yet. We searched for activity cycles in 90 solar-like stars with ages between 4 and 95 Myr aiming to investigate the properties of activity cycles in this age range. We measured the length $P_{ cyc}$ of a given cycle by analyzing the long-term time-series of three activity indexes. For each star, we computed also the global magnetic activity index <IQR> that is proportional to the amplitude of the rotational modulation and is a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars. The lack of correlation between $P_{ cyc}$ and $P_{ rot}$ suggest that these stars belong to the Transitional Branch and that the dynamo acting in these stars is different from the solar one. This statement is also supported by the analysis of the butterfly diagrams. We computed the Spearman correlation coefficient $r_{ S}$ between $P_{ cyc}$, <IQR> and different stellar parameters. We found that $P_{ cyc}$ is uncorrelated with all the investigated parameters. The <IQR> index is positively correlated with the convective turn-over time-scale, the magnetic diffusivity time-scale $tau_{ diff}$, and the dynamo number $D_{ N}$, whereas it is anti-correlated with the effective temperature $T_{ eff}$, the photometric shear $DeltaOmega_{rm phot}$ and the radius $R_{ C}$ at which the convective zone is located. We found that $P_{ cyc}$ is about constant and that <IQR> decreases with the stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB Dor A by merging ASAS time-series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as $P_{ cyc} = 16.78 pm 2 rm yr$.
To shed light on the time evolution of local star formation episodes in M33, we study the association between 566 Giant Molecular Clouds (GMCs), identified through the CO (J=2-1) IRAM-all-disk survey, and 630 Young Stellar Cluster Candidates (YSCCs), selected via Spitzer-24~$mu$m emission. The spatial correlation between YSCCs and GMCs is extremely strong, with a typical separation of 17~pc, less than half the CO(2--1) beamsize, illustrating the remarkable physical link between the two populations. GMCs and YSCCs follow the HI filaments, except in the outermost regions where the survey finds fewer GMCs than YSCCs, likely due to undetected, low CO-luminosity clouds. The GMCs have masses between 2$times 10^4$ and 2$times 10^6$ M$_odot$ and are classified according to different cloud evolutionary stages: inactive clouds are 32$%$ of the total, classified clouds with embedded and exposed star formation are 16$%$ and 52$%$ of the total respectively. Across the regular southern spiral arm, inactive clouds are preferentially located in the inner part of the arm, possibly suggesting a triggering of star formation as the cloud crosses the arm. Some YSCCs are embedded star-forming sites while the majority have GALEX-UV and H$alpha$ counterparts with estimated cluster masses and ages. The distribution of the non-embedded YSCC ages peaks around 5~Myrs with only a few being as old as 8--10~Myrs. These age estimates together with the number of GMCs in the various evolutionary stages lead us to conclude that 14~Myrs is a typical lifetime of a GMC in M33, prior to cloud dispersal. The inactive and embedded phases are short, lasting about 4 and 2~Myrs respectively. This underlines that embedded YSCCs rapidly break out from the clouds and become partially visible in H$alpha$ or UV long before cloud dispersal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا