ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial Structure of SrZr$_{x}$Ti$_{1-x}$O$_3$ films on Ge

127   0   0.0 ( 0 )
 نشر من قبل Divine Kumah
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interfacial structure of SrZr$_{x}$Ti$_{1-x}$O$_3$ films grown on semiconducting Ge substrates are investigated by synchrotron X-ray diffraction and first-principles density functional theory. By systematically tuning Zr content x, the effects of bonding at the interface and epitaxial strain on the physical structure of the film can be distinguished. The interfacial perovskite layers are found to be polarized as a result of cation-anion ionic displacements perpendicular to the perovskite/semiconductor interface. We find a correlation between the observed buckling and valence band offsets at the SrZr$_{x}$Ti$_{1-x}$O$_3$/Ge interface. The theoretical valence band offsets for the polar structures are in agreement with reported X-ray photoelectron spectroscopy measurements. These results have important implications for the integration of functional oxide materials with established semiconductor based technologies.

قيم البحث

اقرأ أيضاً

85 - V. Iurchuk , B. Doudin , J. Bran 2016
Electric control of magnetic properties is an important challenge for modern magnetism and spintronic development. In particular, an ability to write magnetic state electrically would be highly beneficial. Among other methods, the use of electric fie ld induced deformation of piezoelectric elements is a promising low-energy approach for magnetization control. We investigate the system of piezoelectric substrate Pb[Zr$_x$Ti$_{1-x}$]O$_3$ with CoFe overlayers, extending the known reversible bistable electro-magnetic coupling to surface and multistate operations, adding the initial state reset possibility. Increasing the CoFe thickness improves the magnetoresistive sensitivity, but at the expenses of decreasing the strain-mediated coupling, with optimum magnetic thin film thickness of the order of 100 nm. The simplest resistance strain gauge structure is realized and discussed as a multistate memory cell demonstrating both resistive memory (RRAM) and magnetoresistive memory (MRAM) functionalities in a single structure.
Using the spectroscopies based upon x-ray absorption, we have studied the structural and magnetic properties of Zn$_{1-x}$Co$_{x}$O films ($x$ = 0.1 and 0.25) produced by reactive magnetron sputtering. These films show ferromagnetism with a Curie tem perature $T_{mathrm{C}}$ above room temperature in bulk magnetization measurements. Our results show that the Co atoms are in a divalent state and in tetrahedral coordination, thus substituting Zn in the wurtzite-type structure of ZnO. However, x-ray magnetic circular dichroism at the Co textit{L}$_{2,3}$ edges reveals that the Co 3textit{d} sublattice is paramagnetic at all temperatures down to 2 K, both at the surface and in the bulk of the films. The Co 3textit{d} magnetic moment at room temperature is considerably smaller than that inferred from bulk magnetisation measurements, suggesting that the Co 3textit{d} electrons are not directly at the origin of the observed ferromagnetism.
Pulsed laser deposited films of Co doped anatase TiO2 are examined for Co substitutionality, ferromagnetism, transport, magnetotransport and optical properties. Our results show limited solubility (up to ~ 2 %) of Co in the as-grown films and formati on of Co clusters thereafter. For Ti0.93Co0.07O2-d sample, which exhibits a Curie temperature (Tc) over 1180 K, we find the presence of 20-50 nm Co clusters as well as a small concentration of Co incorporated into the remaining matrix. After being subjected to the high temperature anneal during the first magnetization measurement, the very same sample shows a Tc ~ 650 K and almost full matrix incorporation of Co. This Tc is close to that of as-grown Ti0.99Co0.01O2-d sample (~ 700 K). The transport, magnetotransport and optical studies also reveal interesting effects of the matrix incorporation of Co. These results are indicative of an intrinsic Ti1-xCoxO2-d diluted magnetic semiconductor with Tc of about 650-700 K.
For disordered Heisenberg systems with small single ion anisotropy, two spin glass transitions below the long range ordered phase transition temperature has been predicted theoretically for compositions close to the percolation threshold. Experimenta l verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin glass transition temperatures. Results of macroscopic and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFeO3, a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin glass phases SG1 and SG2 in coexistence with the LRO phase below the A-T and G-T lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic peak shows dips with respect to the Brillouin function behaviour around the SG1 and SG2 transition temperatures. The ferroelectric polarisation changes significantly at the two spin glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all the magnetic phases in BF-xBT system. While our results on the two spin glass transitions support the theoretical predictions, it also raises several open questions which need to be addressed by revisiting the existing theories of spin glass transitions by taking into account the effect of magnetoelastic and magnetoelectric couplings as well as electromagnons.
Using density-functional ab initio theoretical techniques, we study (Ga$_{1-x}$In$_x$)$_2$O$_3$ in both its equilibrium structures (monoclinic $beta$ and bixbyite) and over the whole range of composition. We establish that the alloy exhibits a large and temperature-independent miscibility gap. On the low-$x$ side, the favored phase is isostructural with $beta$-Ga$_2$O$_3$; on the high-$x$ side, it is isostructural with bixbyite In$_2$O$_3$. The miscibility gap opens between approximately 15% and 55% In content for the bixbyite alloy grown epitaxially on In$_2$O$_3$, and 15% and 85% In content for the free-standing bixbyite alloy. The gap, volume and band offsets to the parent compound also exhibit anomalies as function of $x$. Specifically, the offsets in epitaxial conditions are predominantly type-B staggered, but have opposite signs in the two end-of-range phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا