ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental characteristics of transverse deflecting field

35   0   0.0 ( 0 )
 نشر من قبل Valentin Paramonov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Panofsky-Wenzel theorem connects the transverse deflecting force in an rf structure with the existence of a longitudinal electric field component. In this paper it is shown that a transverse deflecting force is always accompanied by an additional longitudinal magnetic field component which leads to an emittance growth in the direction perpendicular to the transverse force. Transverse deflecting waves can thus not be described by pure TM or TE modes, but require a linear combination of basis modes for their representation. The mode description is preferably performed in the HM--HE basis to avoid converge problems, which are fundamental for the TM--TE basis.


قيم البحث

اقرأ أيضاً

For the purpose to produce high intensity, multiply charged metal ion beams, the DUHOCAMIS (dual hollow cathode ion source for metal ions) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. It was interesting to investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field. So a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at Peking University, on which have been made primary experiments in connection with discharge characteristics of the source. The experiments with magnetic fields from 0.13 T to 0.52 T have shown that the magnetic flux densities are very sensitive to the discharge behavior: discharge curves and ion spectra. It has been found that the slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting cathode heating power. On the other hand, by comparison of discharge curves between dual hollow cathode discharge (DHCD) mode and PIG discharge mode, it was found a much stronger magnetic effect occurred on DHCD mode. In this paper, the new test bench with ion source structure is described in detail; and main experimental results are presented and discussed, including the effects of cathode heating power and magnetic flux density on discharge characteristics, also the ion spectra. The effects of the magnetic field on the source operating are emphasized, and a unique behavior of the DUHOCAMIS operating in the high magnetic field is expected and discussed especially.
Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere (ROSA) instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structures length. Solar magneto-seismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localised waveguides. The magnetic field strength of the mottle along the $sim$2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is $sim280pm$80 km.
There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we deflect adversarial attacks by causing t he attacker to produce an input that semantically resembles the attacks target class. To this end, we first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance on both standard and defense-aware attacks. We then show that undetected attacks against our defense often perceptually resemble the adversarial target class by performing a human study where participants are asked to label images produced by the attack. These attack images can no longer be called adversarial because our network classifies them the same way as humans do.
Transverse beam stability is strongly affected by the beam space charge. Usually it is analyzed with the rigid-beam model. However this model is only valid when a bare (not affected by the space charge) tune spread is small compared to the space char ge tune shift. This condition specifies a relatively small area of parameters which, however, is the most interesting for practical applications. The Landau damping rate and the beam Schottky spectra are computed assuming that validity condition is satisfied. The results are applied to a round Gaussian beam. The stability thresholds are described by simple fits for the cases of chromatic and octupole tune spreads.
A simplified model describing the PWFA (plasma wakefield acceleration) transverse instability in the form of a wake function parameterized only with an effective cavity aperture radius $a$ is benchmarked against PIC-simulations. This wake function im plies a $1/a^4$ scaling of the transverse wakefields, which indicates transverse intra-beam wakefields typically several orders of magnitude higher than in conventional acceleration structures. Furthermore, the wakefield formalism is utilized to perform a parameter study for a SI{1.5}{teraelectronvolt} plasma wakefield accelerator, where the constraint on drive beam to main beam efficiency imposed by transverse wakefields is taken into account. Eventually, a parameter set with promising properties in terms of energy spread, stability and luminosity per power was found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا