ﻻ يوجد ملخص باللغة العربية
A simplified model describing the PWFA (plasma wakefield acceleration) transverse instability in the form of a wake function parameterized only with an effective cavity aperture radius $a$ is benchmarked against PIC-simulations. This wake function implies a $1/a^4$ scaling of the transverse wakefields, which indicates transverse intra-beam wakefields typically several orders of magnitude higher than in conventional acceleration structures. Furthermore, the wakefield formalism is utilized to perform a parameter study for a SI{1.5}{teraelectronvolt} plasma wakefield accelerator, where the constraint on drive beam to main beam efficiency imposed by transverse wakefields is taken into account. Eventually, a parameter set with promising properties in terms of energy spread, stability and luminosity per power was found.
Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong tran
When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an
We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wavenumber intervals of $0.074 ~textrm{cm}^{-1}$, and are high
We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We
Photonic crystal (PhC) defect cavities that support an accelerating mode tend to trap unwanted higher-order modes (HOMs) corresponding to zero-group-velocity PhC lattice modes at the top of the bandgap. The effect is explained quite generally from ph