ترغب بنشر مسار تعليمي؟ اضغط هنا

fc: A Package for Generalized Function Composition Using Standard Evaluation

251   0   0.0 ( 0 )
 نشر من قبل Xiaofei Wang
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we present a new R package fc that provides a streamlined, standard evaluation-based approach to function composition. Using fc, a sequence of functions can be composed together such that returned objects from composed functions are used as intermediate values directly passed to the next function. Unlike with magrittr and purrr, no intermediate values need to be stored. When benchmarked, functions composed using fc achieve favorable runtimes in comparison to other implementations.



قيم البحث

اقرأ أيضاً

Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg (Chiou and Huang 2021) offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events, possibly with the presence of an informative terminal event. The regression framework is a general scale-change model which encompasses the popular Cox-type model, the accelerated rate model, and the accelerated mean model as special cases. Informative censoring is accommodated through a subject-specific frailty without no need for parametric specification. Different regression models are allowed for the recurrent event process and the terminal event. Also included are visualization and simulation tools.
Implementations in R of classical general-purpose algorithms generally have two major limitations which make them unusable in complex problems: too loose convergence criteria and too long calculation time. By relying on a Marquardt-Levenberg algorith m (MLA), a Newton-like method particularly robust for solving local optimization problems, we provide with marqLevAlg package an efficient and general-purpose local optimizer which (i) prevents convergence to saddle points by using a stringent convergence criterion based on the relative distance to minimum/maximum in addition to the stability of the parameters and of the objective function; and (ii) reduces the computation time in complex settings by allowing parallel calculations at each iteration. We demonstrate through a variety of cases from the literature that our implementation reliably and consistently reaches the optimum (even when other optimizers fail), and also largely reduces computational time in complex settings through the example of maximum likelihood estimation of different sophisticated statistical models.
The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsupervised projection pursuit. It is useful in practice as a preprocessing step to find clusters or as an outlier detection tool for multivariate numerical da ta. Except from the package tourr that implements smooth sequences of projection matrices and rggobi that provides an interface to a dynamic graphics package called GGobi, there is no implementation of exploratory projection pursuit tools available in R especially in the context of outlier detection. REPPlab is an R interface for the Java program EPPlab that implements four projection indices and three biologically inspired optimization algorithms. The implemented indices are either adapted to cluster or to outlier detection and the optimization algorithms have at most one parameter to tune. Following the original software EPPlab, the exploration strategy in REPPlab is divided into two steps. Many potentially interesting projections are calculated at the first step and examined at the second step. For this second step, different tools for plotting and combining the results are proposed with specific tools for outlier detection. Compared to EPPlab, some of these tools are new and their performance is illustrated through some simulations and using some real data sets in a clustering context. The functionalities of the package are also illustrated for outlier detection on a new data set that is provided with the package.
Gaussian processes are a class of flexible nonparametric Bayesian tools that are widely used across the sciences, and in industry, to model complex data sources. Key to applying Gaussian process models is the availability of well-developed open sourc e software, which is available in many programming languages. In this paper, we present a tutorial of the GaussianProcesses.jl package that has been developed for the Julia programming language. GaussianProcesses.jl utilises the inherent computational benefits of the Julia language, including multiple dispatch and just-in-time compilation, to produce a fast, flexible and user-friendly Gaussian processes package. The package provides many mean and kernel functions with supporting inference tools to fit exact Gaussian process models, as well as a range of alternative likelihood functions to handle non-Gaussian data (e.g. binary classification models) and sparse approximations for scalable Gaussian processes. The package makes efficient use of existing Julia packages to provide users with a range of optimization and plotting tools.
We introduce hyppo, a unified library for performing multivariate hypothesis testing, including independence, two-sample, and k-sample testing. While many multivariate independence tests have R packages available, the interfaces are inconsistent and most are not available in Python. hyppo includes many state of the art multivariate testing procedures. The package is easy-to-use and is flexible enough to enable future extensions. The documentation and all releases are available at https://hyppo.neurodata.io.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا