ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic approximations to the Pitman-Yor process

61   0   0.0 ( 0 )
 نشر من قبل Julyan Arbel
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider approximations to the popular Pitman-Yor process obtained by truncating the stick-breaking representation. The truncation is determined by a random stopping rule that achieves an almost sure control on the approximation error in total variation distance. We derive the asymptotic distribution of the random truncation point as the approximation error epsilon goes to zero in terms of a polynomially tilted positive stable distribution. The practical usefulness and effectiveness of this theoretical result is demonstrated by devising a sampling algorithm to approximate functionals of the epsilon-version of the Pitman-Yor process.


قيم البحث

اقرأ أيضاً

The Pitman-Yor process is a random discrete measure. The random weights or masses follow the two-parameter Poisson-Dirichlet distribution with parameters $0<alpha<1, theta>-alpha$. The parameters $alpha$ and $theta$ correspond to the stable and gamma components, respectively. The distribution of atoms is given by a probability $ u$. In this article we consider the limit theorems for the Pitman-Yor process and the two-parameter Poisson-Dirichlet distribution. These include law of large numbers, fluctuations, and moderate or large deviation principles. The limiting procedures involve either $alpha$ tends to zero or one. They arise naturally in genetics and physics such as the asymptotic coalescence time for explosive branching process and the approximation to generalized random energy model for disordered system.
For a long time, the Dirichlet process has been the gold standard discrete random measure in Bayesian nonparametrics. The Pitman--Yor process provides a simple and mathematically tractable generalization, allowing for a very flexible control of the c lustering behaviour. Two commonly used representations of the Pitman--Yor process are the stick-breaking process and the Chinese restaurant process. The former is a constructive representation of the process which turns out very handy for practical implementation, while the latter describes the partition distribution induced. However, the usual proof of the connection between them is indirect and involves measure theory. We provide here an elementary proof of Pitman--Yors Chinese Restaurant process from its stick-breaking representation.
In some non-regular statistical estimation problems, the limiting likelihood processes are functionals of fractional Brownian motion (fBm) with Hursts parameter H; 0 < H <=? 1. In this paper we present several analytical and numerical results on the moments of Pitman estimators represented in the form of integral functionals of fBm. We also provide Monte Carlo simulation results for variances of Pitman and asymptotic maximum likelihood estimators.
147 - Thomas Deschatre 2018
We consider a doubly stochastic Poisson process with stochastic intensity $lambda_t =n qleft(X_tright)$ where $X$ is a continuous It^o semimartingale and $n$ is an integer. Both processes are observed continuously over a fixed period $left[0,Tright]$ . An estimation procedure is proposed in a non parametrical setting for the function $q$ on an interval $I$ where $X$ is sufficiently observed using a local polynomial estimator. A method to select the bandwidth in a non asymptotic framework is proposed, leading to an oracle inequality. If $m$ is the degree of the chosen polynomial, the accuracy of our estimator over the Holder class of order $beta$ is $n^{frac{-beta}{2beta+1}}$ if $m geq lfloor beta rfloor$ and it is optimal in the minimax sense if $m geq lfloor beta rfloor$. A parametrical test is also proposed to test if $q$ belongs to some parametrical family. Those results are applied to French temperature and electricity spot prices data where we infer the intensity of electricity spot spikes as a function of the temperature.
123 - Wenjia Wang 2020
Gaussian process modeling is a standard tool for building emulators for computer experiments, which are usually used to study deterministic functions, for example, a solution to a given system of partial differential equations. This work investigates applying Gaussian process modeling to a deterministic function from prediction and uncertainty quantification perspectives, where the Gaussian process model is misspecified. Specifically, we consider the case where the underlying function is fixed and from a reproducing kernel Hilbert space generated by some kernel function, and the same kernel function is used in the Gaussian process modeling as the correlation function for prediction and uncertainty quantification. While upper bounds and optimal convergence rate of prediction in the Gaussian process modeling have been extensively studied in the literature, a thorough exploration of convergence rates and theoretical study of uncertainty quantification is lacking. We prove that, if one uses maximum likelihood estimation to estimate the variance in Gaussian process modeling, under different choices of the nugget parameter value, the predictor is not optimal and/or the confidence interval is not reliable. In particular, lower bounds of the prediction error under different choices of the nugget parameter value are obtained. The results indicate that, if one directly applies Gaussian process modeling to a fixed function, the reliability of the confidence interval and the optimality of the predictor cannot be achieved at the same time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا