ترغب بنشر مسار تعليمي؟ اضغط هنا

The PRIORI Emotion Dataset: Linking Mood to Emotion Detected In-the-Wild

145   0   0.0 ( 0 )
 نشر من قبل Soheil Khorram
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bipolar Disorder is a chronic psychiatric illness characterized by pathological mood swings associated with severe disruptions in emotion regulation. Clinical monitoring of mood is key to the care of these dynamic and incapacitating mood states. Frequent and detailed monitoring improves clinical sensitivity to detect mood state changes, but typically requires costly and limited resources. Speech characteristics change during both depressed and manic states, suggesting automatic methods applied to the speech signal can be effectively used to monitor mood state changes. However, speech is modulated by many factors, which renders mood state prediction challenging. We hypothesize that emotion can be used as an intermediary step to improve mood state prediction. This paper presents critical steps in developing this pipeline, including (1) a new in the wild emotion dataset, the PRIORI Emotion Dataset, collected from everyday smartphone conversational speech recordings, (2) activation/valence emotion recognition baselines on this dataset (PCC of 0.71 and 0.41, respectively), and (3) significant correlation between predicted emotion and mood state for individuals with bipolar disorder. This provides evidence and a working baseline for the use of emotion as a meta-feature for mood state monitoring.



قيم البحث

اقرأ أيضاً

This paper is a brief introduction to our submission to the seven basic expression classification track of Affective Behavior Analysis in-the-wild Competition held in conjunction with the IEEE International Conference on Automatic Face and Gesture Re cognition (FG) 2020. Our method combines Deep Residual Network (ResNet) and Bidirectional Long Short-Term Memory Network (BLSTM), achieving 64.3% accuracy and 43.4% final metric on the validation set.
144 - Jing Chen 2020
The study of affective computing in the wild setting is underpinned by databases. Existing multimodal emotion databases in the real-world conditions are few and small, with a limited number of subjects and expressed in a single language. To meet this requirement, we collected, annotated, and prepared to release a new natural state video database (called HEU Emotion). HEU Emotion contains a total of 19,004 video clips, which is divided into two parts according to the data source. The first part contains videos downloaded from Tumblr, Google, and Giphy, including 10 emotions and two modalities (facial expression and body posture). The second part includes corpus taken manually from movies, TV series, and variety shows, consisting of 10 emotions and three modalities (facial expression, body posture, and emotional speech). HEU Emotion is by far the most extensive multi-modal emotional database with 9,951 subjects. In order to provide a benchmark for emotion recognition, we used many conventional machine learning and deep learning methods to evaluate HEU Emotion. We proposed a Multi-modal Attention module to fuse multi-modal features adaptively. After multi-modal fusion, the recognition accuracies for the two parts increased by 2.19% and 4.01% respectively over those of single-modal facial expression recognition.
Artificial intelligence and machine learning systems have demonstrated huge improvements and human-level parity in a range of activities, including speech recognition, face recognition and speaker verification. However, these diverse tasks share a ke y commonality that is not true in affective computing: the ground truth information that is inferred can be unambiguously represented. This observation provides some hints as to why affective computing, despite having attracted the attention of researchers for years, may not still be considered a mature field of research. A key reason for this is the lack of a common mathematical framework to describe all the relevant elements of emotion representations. This paper proposes the AMBiguous Emotion Representation (AMBER) framework to address this deficiency. AMBER is a unified framework that explicitly describes categorical, numerical and ordinal representations of emotions, including time varying representations. In addition to explaining the core elements of AMBER, the paper also discusses how some of the commonly employed emotion representation schemes can be viewed through the AMBER framework, and concludes with a discussion of how the proposed framework can be used to reason about current and future affective computing systems.
Autonomous agents that can engage in social interactions witha human is the ultimate goal of a myriad of applications. A keychallenge in the design of these applications is to define the socialbehavior of the agent, which requires extensive content c reation.In this research, we explore how we can leverage current state-of-the-art tools to make inferences about the emotional state ofa character in a story as events unfold, in a coherent way. Wepropose a character role-labelling approach to emotion tracking thataccounts for the semantics of emotions. We show that by identifyingactors and objects of events and considering the emotional stateof the characters, we can achieve better performance in this task,when compared to end-to-end approaches.
123 - A. Sutherland , S. Magg , C. Weber 2021
Recognizing emotions from text in multimodal architectures has yielded promising results, surpassing video and audio modalities under certain circumstances. However, the method by which multimodal data is collected can be significant for recognizing emotional features in language. In this paper, we address the influence data collection methodology has on two multimodal emotion recognition datasets, the IEMOCAP dataset and the OMG-Emotion Behavior dataset, by analyzing textual dataset compositions and emotion recognition accuracy. Experiments with the full IEMOCAP dataset indicate that the composition negatively influences generalization performance when compared to the OMG-Emotion Behavior dataset. We conclude by discussing the impact this may have on HRI experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا