ﻻ يوجد ملخص باللغة العربية
In a semiprime ring, von Neumann regular elements are determined by their inner inverses. In particular, for elements $a,b$ of a von Neumann regular ring $R$, $a=b$ if and only if $I(a)=I(b)$, where $I(x)$ denotes the set of inner inverses of $xin R$. We also prove that, in a semiprime ring, the same is true for reflexive inverses.
In this paper, we introduce two new generalized inverses of matrices, namely, the $bra{i}{m}$-core inverse and the $pare{j}{m}$-core inverse. The $bra{i}{m}$-core inverse of a complex matrix extends the notions of the core inverse defined by Baksalar
In this paper, we introduce the notion of a (generalized) right core inverse and give its characterizations and expressions. Then, we provide the relation schema of (one-sided) core inverses, (one-sided) pseudo core inverses and EP elements.
Let R be a unit-regular ring, and let a,b,c in R satisfy aba=aca. If ac and ba are group invertible, we prove that ac is similar to ba. Furthermore, if ac and ba are Drazin invertible, then their Drazin inverses are similar. For any ntimes n complex
In this paper, we find the roots of lightlike quaternions. By introducing the concept of the Moore-Penrose inverse in split quaternions, we solve the linear equations $axb=d$, $xa=bx$ and $xa=bbar{x}$. Also we obtain necessary and sufficient conditio
We give some statements that are equivalent to the existence of group inverses of Peirce corner matrices of a $2 times 2$ block matrix and its generalized Schur complements. As applications, several new results for the Drazin inverses of the generali