ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce the notion of a (generalized) right core inverse and give its characterizations and expressions. Then, we provide the relation schema of (one-sided) core inverses, (one-sided) pseudo core inverses and EP elements.
In this paper, we introduce two new generalized inverses of matrices, namely, the $bra{i}{m}$-core inverse and the $pare{j}{m}$-core inverse. The $bra{i}{m}$-core inverse of a complex matrix extends the notions of the core inverse defined by Baksalar
Let $mathscr{C}$ be an additive category with an involution $ast$. Suppose that $varphi : X rightarrow X$ is a morphism with kernel $kappa : K rightarrow X$ in $mathscr{C}$, then $varphi$ is core invertible if and only if $varphi$ has a cokernel $lam
In a semiprime ring, von Neumann regular elements are determined by their inner inverses. In particular, for elements $a,b$ of a von Neumann regular ring $R$, $a=b$ if and only if $I(a)=I(b)$, where $I(x)$ denotes the set of inner inverses of $xin R$
Let R be a unital ring with involution, we give the characterizations and representations of the core and dual core inverses of an element in R by Hermitian elements (or projections) and units. For example, let a in R and n is an integer greater than
A new generalized inverse for a square matrix $Hinmathbb{C}^{ntimes n}$, called CCE-inverse, is established by the core-EP decomposition and Moore-Penrose inverse $H^{dag}$. We propose some characterizations of the CCE-inverse. Furthermore, two canon