ترغب بنشر مسار تعليمي؟ اضغط هنا

MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance

62   0   0.0 ( 0 )
 نشر من قبل Dror Simon
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Sparse coding refers to the pursuit of the sparsest representation of a signal in a typically overcomplete dictionary. From a Bayesian perspective, sparse coding provides a Maximum a Posteriori (MAP) estimate of the unknown vector under a sparse prior. In this work, we suggest enhancing the performance of sparse coding algorithms by a deliberate and controlled contamination of the input with random noise, a phenomenon known as stochastic resonance. The proposed method adds controlled noise to the input and estimates a sparse representation from the perturbed signal. A set of such solutions is then obtained by projecting the original input signal onto the recovered set of supports. We present two variants of the described method, which differ in their final step. The first is a provably convergent approximation to the Minimum Mean Square Error (MMSE) estimator, relying on the generative model and applying a weighted average over the recovered solutions. The second is a relaxed variant of the former that simply applies an empirical mean. We show that both methods provide a computationally efficient approximation to the MMSE estimator, which is typically intractable to compute. We demonstrate our findings empirically and provide a theoretical analysis of our method under several different cases.

قيم البحث

اقرأ أيضاً

State-of-the-art methods for Convolutional Sparse Coding usually employ Fourier-domain solvers in order to speed up the convolution operators. However, this approach is not without shortcomings. For example, Fourier-domain representations implicitly assume circular boundary conditions and make it hard to fully exploit the sparsity of the problem as well as the small spatial support of the filters. In this work, we propose a novel stochastic spatial-domain solver, in which a randomized subsampling strategy is introduced during the learning sparse codes. Afterwards, we extend the proposed strategy in conjunction with online learning, scaling the CSC model up to very large sample sizes. In both cases, we show experimentally that the proposed subsampling strategy, with a reasonable selection of the subsampling rate, outperforms the state-of-the-art frequency-domain solvers in terms of execution time without losing the learning quality. Finally, we evaluate the effectiveness of the over-complete dictionary learned from large-scale datasets, which demonstrates an improved sparse representation of the natural images on account of more abundant learned image features.
This paper is devoted to two different two-time-scale stochastic approximation algorithms for superquantile estimation. We shall investigate the asymptotic behavior of a Robbins-Monro estimator and its convexified version. Our main contribution is to establish the almost sure convergence, the quadratic strong law and the law of iterated logarithm for our estimates via a martingale approach. A joint asymptotic normality is also provided. Our theoretical analysis is illustrated by numerical experiments on real datasets.
It has recently been observed that certain extremely simple feature encoding techniques are able to achieve state of the art performance on several standard image classification benchmarks including deep belief networks, convolutional nets, factored RBMs, mcRBMs, convolutional RBMs, sparse autoencoders and several others. Moreover, these triangle or soft threshold encodings are ex- tremely efficient to compute. Several intuitive arguments have been put forward to explain this remarkable performance, yet no mathematical justification has been offered. The main result of this report is to show that these features are realized as an approximate solution to the a non-negative sparse coding problem. Using this connection we describe several variants of the soft threshold features and demonstrate their effectiveness on two image classification benchmark tasks.
In this paper, we present a new interpretation of non-negatively constrained convolutional coding problems as blind deconvolution problems with spatially variant point spread function. In this light, we propose an optimization framework that generali zes our previous work on non-negative group sparsity for convolutional models. We then link these concepts to source localization problems that arise in scientific imaging and provide a visual example on an image derived from data captured by the Hubble telescope.
We solve the analysis sparse coding problem considering a combination of convex and non-convex sparsity promoting penalties. The multi-penalty formulation results in an iterative algorithm involving proximal-averaging. We then unfold the iterative al gorithm into a trainable network that facilitates learning the sparsity prior. We also consider quantization of the network weights. Quantization makes neural networks efficient both in terms of memory and computation during inference, and also renders them compatible for low-precision hardware deployment. Our learning algorithm is based on a variant of the ADAM optimizer in which the quantizer is part of the forward pass and the gradients of the loss function are evaluated corresponding to the quantized weights while doing a book-keeping of the high-precision weights. We demonstrate applications to compressed image recovery and magnetic resonance image reconstruction. The proposed approach offers superior reconstruction accuracy and quality than state-of-the-art unfolding techniques and the performance degradation is minimal even when the weights are subjected to extreme quantization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا