Some physical aspects of Chinese cuisine are discussed. We start from the cultural and historical particularities of the Chinese cuisine and technologies of food production. What is the difference between raw and boiled meat? What is the difference in the physical processes of heat transfer during steaming of dumplings and their cooking in boiling water? Why is it possible to cook meat stripes in a hot pot in ten seconds, while baking a turkey requires several hours? This article is devoted to discussion of these questions.
In each rowing sport, the oars have their very own characteristics most of the time selected through a long time experience. Here we address experimentally and theoretically the problem of rowing efficiency as function of row lengths and blades sizes
. In contrast with previous studies which consider imposed kinematics, we set an imposed force framework which is closer to human constraints. We find that optimal row lengths and blades sizes depend on sports and athletes strength, and provide an optimisation scheme.
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model doe
s not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.
Archery lends itself to scientific analysis. In this paper we discuss physics laws that relate to the mechanics of bow and arrow, to the shooting process and to the flight of the arrow. In parallel, we describe experiments that address these laws. Th
e detailed results of these measurements, performed with a specific bow and arrow, provide insight into many aspects of archery and illustrate the importance of quantitative information in the scientific process. Most of the proposed experiments use only modest tools and can be carried out by archers with their own equipment.
We describe the theoretical ideas, developed between the 1950s-1970s, which led to the prediction of the Higgs boson, the particle that was discovered in 2012. The forces of nature are based on symmetry principles. We explain the nature of these symm
etries through an economic analogy. We also discuss the Higgs mechanism, which is necessary to avoid some of the naive consequences of these symmetries, and to explain various features of elementary particles.
Here I indulge in wide-ranging speculations on the shape of physics, and technology closely related to physics, over the next one hundred years. Themes include the many faces of unification, the re-imagining of quantum theory, and new forms of engineering on small, intermediate, and large scales.