ﻻ يوجد ملخص باللغة العربية
Reo is an interaction-centric model of concurrency for compositional specification of communication and coordination protocols. Formal verification tools exist to ensure correctness and compliance of protocols specified in Reo, which can readily be (re)used in different applications, or composed into more complex protocols. Recent benchmarks show that compiling such high-level Reo specifications produces executable code that can compete with or even beat the performance of hand-crafted programs written in languages such as C or Java using conventional concurrency constructs. The original declarative graphical syntax of Reo does not support intuitive constructs for parameter passing, iteration, recursion, or conditional specification. This shortcoming hinders Reos uptake in large-scale practical applications. Although a number of Reo-inspired syntax alternatives have appeared in the past, none of them follows the primary design principles of Reo: a) declarative specification; b) all channel types and their sorts are user-defined; and c) channels compose via shared nodes. In this paper, we offer a textual syntax for Reo that respects these principles and supports flexible parameter passing, iteration, recursion, and conditional specification. In on-going work, we use this textual syntax to compile Reo into target languages such as Java, Promela, and Maude.
We present Cho-Reo-graphies (CR), a new language model that unites two powerful programming paradigms for concurrent software based on communicating processes: Choreographic Programming and Exogenous Coordination. In CR, programmers specify the desir
Coordination languages simplify design and development of concurrent systems. Particularly, exogenous coordination languages, like BIP and Reo, enable system designers to express the interactions among components in a system explicitly. In this paper
Emerging GPU architectures for high performance computing are well suited to a data-parallel programming model. This paper presents preliminary work examining a programming methodology that provides Fortran programmers with access to these emerging s
We present a language to specify syntax guided synthesis (SyGuS) problems. Syntax guidance is a prominent theme in contemporary program synthesis approaches, and SyGuS was first described in [1]. This paper describes concretely the input format of a
Algorithmic and data refinement are well studied topics that provide a mathematically rigorous approach to gradually introducing details in the implementation of software. Program refinements are performed in the context of some programming language,