ترغب بنشر مسار تعليمي؟ اضغط هنا

Programming Language Features for Refinement

113   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jason Koenig




اسأل ChatGPT حول البحث

Algorithmic and data refinement are well studied topics that provide a mathematically rigorous approach to gradually introducing details in the implementation of software. Program refinements are performed in the context of some programming language, but mainstream languages lack features for recording the sequence of refinement steps in the program text. To experiment with the combination of refinement, automated verification, and language design, refinement features have been added to the verification-aware programming language Dafny. This paper describes those features and reflects on some initial usage thereof.



قيم البحث

اقرأ أيضاً

Programming by Example (PBE) is a program synthesis paradigm in which the synthesizer creates a program that matches a set of given examples. In many applications of such synthesis (e.g., program repair or reverse engineering), we are to reconstruct a program that is close to a specific target program, not merely to produce some program that satisfies the seen examples. In such settings, we wish that the synthesized program generalizes well, i.e., has as few errors as possible on the unobserved examples capturing the target function behavior. In this paper, we propose the first framework (called SynGuar) for PBE synthesizers that guarantees to achieve low generalization error with high probability. Our main contribution is a procedure to dynamically calculate how many additional examples suffice to theoretically guarantee generalization. We show how our techniques can be used in 2 well-known synthesis approaches: PROSE and STUN (synthesis through unification), for common string-manipulation program benchmarks. We find that often a few hundred examples suffice to provably bound generalization error below $5%$ with high ($geq 98%$) probability on these benchmarks. Further, we confirm this empirically: SynGuar significantly improves the accuracy of existing synthesizers in generating the right target programs. But with fewer examples chosen arbitrarily, the same baseline synthesizers (without SynGuar) overfit and lose accuracy.
143 - Walid Taha 2011
Accurate programming is a practical approach to producing high quality programs. It combines ideas from test-automation, test-driven development, agile programming, and other state of the art software development methods. In addition to building on a pproaches that have proven effective in practice, it emphasizes concepts that help programmers sharpen their understanding of both the problems they are solving and the solutions they come up with. This is achieved by encouraging programmers to think about programs in terms of properties.
Class invariants -- consistency constraints preserved by every operation on objects of a given type -- are fundamental to building and understanding object-oriented programs. They should also be a key help in verifying them, but turn out instead to r aise major verification challenges which have prompted a significant literature with, until now, no widely accepted solution. The present work introduces a general proof rule meant to address invariant-related issues and allow verification tools benefit from invariants. It first clarifies the notion of invariant and identify the three problems: callbacks, furtive access and reference leak. As an example, the 2016 Ethereum DAO bug, in which $50 million were stolen, resulted from a callback invalidating an invariant. The discussion starts with a Simple Model and an associated proof rule, demonstrating its soundness. It then removes one by one the three assumptions of the Simple Model, each removal bringing up one of the three issues, and introduces the corresponding adaptation to the proof rule. The final version of the rule can tackle tricky examples, including challenge problems listed in the literature.
While modern software development heavily uses versioned packages, programming languages rarely support the concept
59 - Peter D. Mosses 2019
The CBS framework supports component-based specification of programming languages. It aims to significantly reduce the effort of formal language specification, and thereby encourage language developers to exploit formal semantics more widely. CBS pro vides an extensive library of reusable language specification components, facilitating co-evolution of languages and their specifications. After introducing CBS and its formal definition, this short paper reports work in progress on generating an IDE for CBS from the definition. It also considers the possibility of supporting component-based language specification in other formal language workbenches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا