ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of entanglement in the one-dimensional anisotropic XXZ model

87   0   0.0 ( 0 )
 نشر من قبل Xiangmu Kong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of entanglement in the one-dimensional spin-1/2 anisotropic XXZ model is studied using the quantum renormalization-group method. We obtain the analytical expression of the concurrence, for two different quenching methods, it is found that initial state plays a key role in the evolution of system entanglement, i.e., the system returns completely to the initial state every other period. Our computations and analysis indicate that the first derivative of the characteristic time at which the concurrence reaches its maximum or minimum with respect to the anisotropic parameter occurs nonanalytic behaviors at the quantum critical point. Interestingly, the minimum value of the first derivative of the characteristic time versus the size of the system exhibits the scaling behavior which is the same as the scaling behavior of the system ground-state entanglement in equilibrium. In particular, the scaling behavior near the critical point is independent of the initial state.



قيم البحث

اقرأ أيضاً

A simple one-dimensional model is constructed for polymer motion. It exhibits the crossover from reptation to Rouse dynamics through gradually allowing hernia creation and annihilation. The model is treated by the density matrix technique which permi ts an accurate finite-size-scaling analysis of the behavior of long polymers.
The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent tra nsverse correlation function and the corresponding spectral density are calculated for two typical disordered states. We find that for the bimodal disorder the dynamics of the system undergoes a crossover from a collective-mode behavior to a central-peak one and for the Gaussian disorder the dynamics is complex. For both cases, it is found that the central-peak behavior becomes more obvious and the collective-mode behavior becomes weaker as $K_{i}$ increase, especially when $K_{i}>J_{i}/2$ ($J_{i}$ and $K_{i}$ are exchange couplings of the NN and NNN interactions, respectively). However, the effects are small when the NNN interactions are weak ($K_{i}<J_{i}/2$).
143 - Yi Liao , Xiao-Bo Gong , Chu Guo 2019
In this paper, we determine the geometric phase for the one-dimensional $XXZ$ Heisenberg chain with spin-$1/2$, the exchange couple $J$ and the spin anisotropy parameter $Delta$ in a longitudinal field(LF) with the reduced field strength $h$. Using t he Jordan-Wigner transformation and the mean-field theory based on the Wicks theorem, a semi-analytical theory has been developed in terms of order parameters which satisfy the self-consistent equations. The values of the order parameters are numerically computed using the matrix-product-state(MPS) method. The validity of the mean-filed theory could be checked through the comparison between the self-consistent solutions and the numerical results. Finally, we draw the the topological phase diagrams in the case $J<0$ and the case $J>0$.
We show that the dynamic structure factor of a one-dimensional Bose liquid has a power-law singularity defining the main mode of collective excitations. Using the Lieb-Liniger model, we evaluate the corresponding exponent as a function of the wave vector and the interaction strength.
195 - Tridib Sadhu , Deepak Dhar 2007
We study the Zhang model of sandpile on a one dimensional chain of length $L$, where a random amount of energy is added at a randomly chosen site at each time step. We show that in spite of this randomness in the input energy, the probability distrib ution function of energy at a site in the steady state is sharply peaked, and the width of the peak decreases as $ {L}^{-1/2}$ for large $L$. We discuss how the energy added at one time is distributed among different sites by topplings with time. We relate this distribution to the time-dependent probability distribution of the position of a marked grain in the one dimensional Abelian model with discrete heights. We argue that in the large $L$ limit, the variance of energy at site $x$ has a scaling form $L^{-1}g(x/L)$, where $g(xi)$ varies as $log(1/xi)$ for small $xi$, which agrees very well with the results from numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا