ﻻ يوجد ملخص باللغة العربية
The dynamics of entanglement in the one-dimensional spin-1/2 anisotropic XXZ model is studied using the quantum renormalization-group method. We obtain the analytical expression of the concurrence, for two different quenching methods, it is found that initial state plays a key role in the evolution of system entanglement, i.e., the system returns completely to the initial state every other period. Our computations and analysis indicate that the first derivative of the characteristic time at which the concurrence reaches its maximum or minimum with respect to the anisotropic parameter occurs nonanalytic behaviors at the quantum critical point. Interestingly, the minimum value of the first derivative of the characteristic time versus the size of the system exhibits the scaling behavior which is the same as the scaling behavior of the system ground-state entanglement in equilibrium. In particular, the scaling behavior near the critical point is independent of the initial state.
A simple one-dimensional model is constructed for polymer motion. It exhibits the crossover from reptation to Rouse dynamics through gradually allowing hernia creation and annihilation. The model is treated by the density matrix technique which permi
The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent tra
In this paper, we determine the geometric phase for the one-dimensional $XXZ$ Heisenberg chain with spin-$1/2$, the exchange couple $J$ and the spin anisotropy parameter $Delta$ in a longitudinal field(LF) with the reduced field strength $h$. Using t
We show that the dynamic structure factor of a one-dimensional Bose liquid has a power-law singularity defining the main mode of collective excitations. Using the Lieb-Liniger model, we evaluate the corresponding exponent as a function of the wave vector and the interaction strength.
We study the Zhang model of sandpile on a one dimensional chain of length $L$, where a random amount of energy is added at a randomly chosen site at each time step. We show that in spite of this randomness in the input energy, the probability distrib